
Using perf On Arm platforms
Leo Yan & Daniel Thompson

Linaro Support and Solutions Engineering

Introduction
perf is a performance analysis tools for Linux,
it covers hardware level features and
software features for performance profiling
with the high efficiency.

We will review the fundamental mechanism
for perf, then go through different usages
delivered by perf, mainly for Arm related
hardware features. We will conclude the
session by discussing an examples.

We will finish this material in 50 minutes.

Agenda
● Statistical profiling on Arm platforms

○ Fundamental mechanism (for statistical profiling)
○ Profile with timer
○ Profile with PMU

● Using perf with tracing tools
○ Profile with ftrace
○ Profile with probes
○ Profile with CoreSight

● Debugging stories

perf - a family of useful tools
 perf is a powerful profiling tool; primarily it
exploits the CPU performance counters but
can also gather information from other
sources (including hrtimers, static
tracepoints and dynamic probes).

perf is a family of useful tools collected into a
single binary; it is a profiling tool to gather
statistics info and report the result, it can act
as a wrapper for ftrace and eBPF, it also
includes the benchmark suites for memory,
scheduling performance testing, etc.

perf top perf stat perf record

perf probe perf listperf ftrace

perf report perf annotate

perf data perf diff perf evlist

perf script

perf bench

Profiling and tracing

Reports

Benchmark suites

perf sched

perf inject

Profiling events
 perf supports different kinds profiling events,
especially statistical profiling and
performance monitoring.

At the most basic end, a timer (clock event)
can used to periodically sample the PC,
however profiling can be triggered by other
hardware events such as I$ or D$ miss,
branch instruction, etc. perf also can rely on
hardware breakpoint for profiling.

perf also supports software events for kernel
software event statistics, like context
switches counting, ftrace tracepoints, etc.

perf list command is used to quickly
check what events are supported in your
system:

perf list

 cache-misses [Hardware event]
 [...]

 cpu-clock [Software event]
 context-switches OR cs [Software event]
 [...]

 mem:<addr>[/len][:access] [Hardware breakpoint]

 9p:9p_client_req [Tracepoint event]
 [...]

Profiling modes
 perf performance profiling can be free-run
to count cycles, cache misses and branch
misprediction (e.g. perf stat), or they
can interrupt after N samples to allow
statistical profiling (e.g. perf record) and
also can capture context info.

Different profilers have different levels of
overhead, the statistical profiler has low
overhead, the tracing profiler is more
accurate but with high overhead.

Free-run profiling

Start profiling Finish profiling
and read
statistics

Program execution period

Sampling based profiling

Start profiling Finish profiling

Program execution period

N samples
interrupt

Interfaces between kernel and user space
 The user space program uses the system
call perf_event_open() to open event
and uses fcntl() to set the blocking
mode; A read() on a counter returns the
current value of the counter and this is
used to read free-running counters (e.g.
perf stat).

The sampling counter generates events
and store them in the ring buffer, which is
available to user space using mmap(). The
data can be saved into perf.data file
with perf record.

Interfaces between kernel and user space

User space
Kernel

sys_perf_event_open mmap

Events

read

Software
event

Hardware
event

Interrupt

samples

ID

PID

…...

perf stat -e 'cycles' ls

perf record -e 'cycles' ls

perf.data

Control tracing scope for counters
 perf organizes counters as the counter group, a
counter group is scheduled to the CPU as a unit,
so the values of the member counters can be
meaningfully compared, added, divided (to get
ratios), etc.

perf events can be system wide, or they can be
attached to specific CPUs with specific tasks; it
can profile per-thread wise or per-cpu wise;
perf events also can be restricted to the times
when the CPU is in user, kernel or hypervisor
mode.

 perf record -e cs_etm/@826000.etr/u
 --per-thread ./main

Counters organization metrics

CPU0 CPU1

task0

task1

task0
Per thread profiling

Per CPU profiling

User mode

Kernel mode

Hypervisor

Profiling result analysis
 The perf data can be investigated by perf
report. It explores the tracer configuration
info and sample data in the perf file and
connect with Dynamic Shared Object (DSO)
for analysis.

DSOs are referred by build id and cached in
the folder ~/.debug/ and they can be
archived by perf archive, the tar file can be
used by another platform for cross-analysis.

Example for statistics result

Samples: 32K of event 'cache-misses'
Event count (approx.): 14284599
#
Overhead Command Shared Object Symbol
........
#

 67.20% sched-pipe [kernel.kallsyms] [k]
_raw_spin_unlock_irqrestore
 3.19% sched-pipe [kernel.kallsyms] [k] pipe_read
 2.28% sched-pipe [kernel.kallsyms] [k] mutex_lock
 2.15% sched-pipe [kernel.kallsyms] [k] copy_page_from_iter
 1.99% sched-pipe [kernel.kallsyms] [k] el0_svc_naked

Annotation with source code
 perf annotate maps profile information to
source code; it displays the source code
alongside assembly code if the object file has
debug symbols; otherwise if without debug
symbols then it only displays assembly.

Displayed information is straightforward to
review and it is easy to associate lines in the
source code with percentage information.
Pressing enter can dig deeper function and
pressing q jumps to upper function.

By pressing a in perf report context it can
annotate for specific function.

Example for perf annotate

Post process with scripts
 perf script reads the input file and
displays the detailed trace of the
workload with specified fields, e.g. pid,
cpu and time, etc.

 perf script -F cpu,event,ip

Furthermore, perf provides support for
post process with python or perl scripts
that aggregates and extracts useful
information from a raw perf stream.

 perf script -s syscall-enter.py

Example for dump syscall invoking

import os
import sys

from perf_trace_context import *
from Core import *

def trace_begin():
print "in trace_begin"

def trace_end():
print "in trace_end"

def raw_syscalls__sys_enter(event_name, context,
 common_cpu, common_secs,
 common_nsecs, common_pid,
 Common_comm, id, args):

print "id=%d, args=%s\n" % (id, args)

Profile with timer
 perf includes support for time based
profiling using hrtimers, it’s intuitive to
understand how the code consumes time.

perf provide two time based profilers
cpu-clock and task-clock; cpu-clock is
wall-clock based and samples are taken
at regular intervals relative to walltime;
task-clock is to sample the specific task
run time.

perf top -F 99 -ns comm,dso

 59.62% 22 perf [kernel]
 36.15% 12 perf perf
 3.72% 28 swapper [kernel]
 0.51% 14 kworker/1:1 [kernel]

perf record -e task-clock -F 99 uname

Profile with CPU clock at 99Hz

Profile with task clock at 99Hz

If sampling frequency is the same as some repeating
event within the profiled code, then the profile will be
misleading since the interrupt will always hit the same
bit of code. Deliberately selecting a rate that is not a
multiple of 10 (nor a power-of-2) 99 makes this unlikely.

Quick review for Arm PMU
 Nowadays, modern CPUs provide performance
monitoring unit (PMU) to count CPU clock cycle,
cache and branch events for profiling. A PMU is
useful to observe performance and can monitor
right down to CPU microarchitecture level.

We can enable multiple PMU events in one perf
command, but it has limitation for support
maximum numbers of events at the same time
(e.g. CA53 supports max to 6 events + 1 cycle
counter).

perf includes a general framework to expose
PMU event, keeps PMU driver simple in kernel;
complexity is in userspace.

PMU

Cycle counter

Performance counter

…...

Performance counter

PMU

Cycle counter

Performance counter

…...

Performance counter

CPU_CLK

CPU_CLK

CPU0

CPU1

SPI_0

SPI_1

Profile with PMU
 perf have defined standard event names for
instruction, cache and branch related hardware
events profiling.

 perf state -a -e \
 cache-references,cache-misses -- sleep 10

perf provides comparison between metrics so can
easily get the ratio, e.g. comparing ‘cache-misses’
to ‘cache-references’ for cache missing percentage.

Performance counter stats for 'system wide':

 5756626419 cache-references
 233027636 cache-misses # 4.048 % of all cache refs

 10.004134787 seconds time elapsed

perf standard events don’t cover all available
hardware events provided by PMU; we can use
the raw mode to explore more hardware events,
e.g. we can directly access CA53 events with
raw ID number: 03 for ‘L1 Data cache refill’ and
04 is for ‘L1 data cache access’.

 perf stat -a -e r04,r03 -- sleep 10

Arm platform refers to cache profiling with L1
cache level with standard event. For L2 cache
profiling, we can use raw mode to access
related events and aggregate all related CPUs
statistics shared with the same L2 cache.

Example for profiling hotspot with PMU
Step 1: use ‘top’ to browse which program consumes more CPU bandwidth than expected:

 # top
 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 582 root 20 0 0 0 0 D 2.3 0.0 0:02.70 cpu_hl_t1

Step 2: Gather profiling data with ‘cycles’ event with attaching to task with pid=582:

 # perf record -e cycles -p 582 -- sleep 20

Step 3: Generate perf report and find hotspot functions:

 # perf report
 # Overhead Command Shared Object Symbol
 #
 #
 93.00% cpu_hl_t1 [kernel.kallsyms] [k] test_thread
 1.94% cpu_hl_t1 [kernel.kallsyms] [k] _raw_spin_unlock_irqrestore
 1.67% cpu_hl_t1 [kernel.kallsyms] [k] _raw_spin_unlock_irq

if the the CPU is dynamic
frequency scaling; rather than
time based profiling, we can
rely on PMU cycle counter for
more accurate profiling.

Agenda
● Statistical profiling on Arm platforms

○ Fundamental mechanism (for statistical profiling)
○ Profile with timer
○ Profile with PMU

● Using perf with tracing tools
○ Profile with ftrace
○ Profile with probes
○ Profile with CoreSight

● Debugging stories

Profile with ftrace
 perf can work with ftrace as wrapper to enable
function or function_graph tracer for function
tracing; the another mode is to enable the
tracepoint and statistics trace events:

 perf ftrace -a --trace-funcs __kmalloc
 perf record -e kmem:kmalloc -- sleep 5

 Based on ftrace, perf provides advanced tool
perf sched to trace and measure scheduling
latency.
 perf sched record -- sleep 1

 perf sched latency

perf sched latency

 Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |

 kworker/1:1-eve:46 | 0.913 ms | 22 | avg: 0.039 ms | max: 0.043 ms | max at: 5824.869919 s
 kworker/2:1-eve:44 | 1.542 ms | 42 | avg: 0.038 ms | max: 0.042 ms | max at: 5824.833924 s
 kworker/3:1-eve:95 | 0.924 ms | 23 | avg: 0.037 ms | max: 0.043 ms | max at: 5824.845919 s
 kworker/0:1-eve:100 | 0.209 ms | 3 | avg: 0.034 ms | max: 0.043 ms | max at: 5824.881921 s
 perf:3172 | 4.130 ms | 1 | avg: 0.025 ms | max: 0.025 ms | max at: 5825.800291 s
 rcu_preempt:10 | 0.035 ms | 5 | avg: 0.020 ms | max: 0.050 ms | max at: 5824.825915 s
 sleep:3173 | 4.780 ms | 5 | avg: 0.012 ms | max: 0.032 ms | max at: 5825.798935 s

 TOTAL: | 12.667 ms | 105 |

Profile with probes
 Kprobes/Uprobes is dynamic event tracing in
kernel and user space app irrespectively, the
probes can be added or removed on the fly.

Though we can use Ftrace SysFS node to
enable probes, but perf probe is more
convenient to enable probes without
disassembly and easily connect the tracing
with source code for analysis.

perf probe --line command is convenient
to check available probes mapping to source
code:
 # perf probe --line "update_min_vruntime" \
 -s $KERNEL_SRC

Example for perf probe --line

Profile with probes - cont.
perf probe --vars
tells available variables
at given probe point.

By complying probe syntax
we can define probe points
with command perf
probe --add; in the
example it enables probe
by specifying function
name and relative offset.

Integrate CoreSight with perf
 CoreSight is a hardware IP which can trace
program flow and thus can facilitate
hardware assisted tracing and profiling.

To integrate Coresight with the perf
framework, CoreSight framework registers
Embedded Trace Macrocell (ETM) as a
PMU event cs_etm to the perf core; Using
perf command to specify a sink to indicate
where to record the trace data.

OpenCSD libraries need to be linked with
the perf building for CoreSight trace
decoding.

http://connect.linaro.org/resource/las16/las16-210/

ETM

Core1 ETM

f
u
n
n
e
l

ETR

ETF

Core0

perf record -e cs_etm/@826000.etr \
 --per-thread ./main

perf report

OpenCSD
Decoding

https://www.google.com/url?q=http://connect.linaro.org/resource/las16/las16-210/&sa=D&ust=1537305975582000&usg=AFQjCNGT0O1rOKmDKy7t0GCRKGsewRiy_Q
https://www.google.com/url?q=http://connect.linaro.org/resource/las16/las16-210/&sa=D&ust=1537305975582000&usg=AFQjCNGT0O1rOKmDKy7t0GCRKGsewRiy_Q

Limitations for CoreSight profiling
 CoreSight ETM is used to trace program flow for
branch instructions, exception and return
instructions, etc. So perf tool can decode the
Coresight trace data to know the program flow.

CoreSight ETM supports limitation for tracing
with perf options, e.g. -k and -u to specify only
for kernel space or user space; and support
option --filter to specify tracing address range:

 perf record -e cs_etm/@826000.etr/k \
 --filter 'filter 0xffffff800856bc50/0x60' \
 --per-thread ./main

 Currently ETM can only support --per-thread
mode; when the task is scheduled on the CPU
then its ETM is enabled, after the task is
scheduled out, the corresponding ETM will be
disabled.

 perf record -e cs_etm/@826000.etr \
 --per-thread ./main

Currently we are working on support for
CPU-wide trace scenarios, before this is
completed we can manually open all tracing
source for all CPUs from SysFS nodes.

Decode trace data with OpenCSD
 Comparing to general PMU device,
CoreSight trace outputs compressed data
thus perf cannot directly generate sample
based structure.

 At the runtime perf saves compressed data
into perf file alongside metadata for ETM
configure informations.

During report the Coresight trace data, perf
decodes the trace data to packets and
generate synthesize samples. Finally the
samples can be used for statistics.

header ... CoreSight
meta data ... CoreSight

trace data ...

perf.data for CoreSight

packet
packet
packet
packet

……

perf report
perf script OpenCSD

ID
PID

…...

branch sample

end_addr
start_addr

packet

Decoding

Synthesize
samples

Profiling with CoreSight
After decoding CoreSight trace data, perf
tool is straightforward to generate branch
samples with branch end address and next
start address; so the branch samples can
be used for profiling.

perf record -e cs_etm/@825000.etf/k --filter 'start 0xffffff80089278e8,stop 0xffffff8008928084' \
 --per-thread ./timectxsw

perf report --vmlinux=./userdata/vmlinux
Samples: 328K of event 'instructions:k'
Event count (approx.): 1624347
#
Children Self Command Shared Object Symbol
........
#
 1.26% 1.26% timectxsw [kernel.kallsyms] [.] 0xffffff80080eb994
 0.99% 0.99% timectxsw [kernel.kallsyms] [.] 0xffffff800812ec44
 0.91% 0.91% timectxsw [kernel.kallsyms] [.] 0xffffff80080eb9d4
 0.89% 0.89% timectxsw [kernel.kallsyms] [.] 0xffffff80080ea8cc

CoreSight works like a normal PMU
device mode and output result with
commands perf report and perf
script.

Post process CoreSight trace data

perf script -s arm-cs-trace-disasm.py -F cpu,event,ip,addr,sym -- -d objdump -k ./vmlinux
ARM CoreSight Trace Data Assembler Dump
 ffff000008a5f2dc <etm4_enable_hw+0x344>:
 ffff000008a5f2dc: 340000a0 cbz w0, ffff000008a5f2f0 <etm4_enable_hw+0x358>
 ffff000008a5f2f0 <etm4_enable_hw+0x358>:
 ffff000008a5f2f0: f9400260 ldr x0, [x19]
 ffff000008a5f2f4: d5033f9f dsb sy
 ffff000008a5f2f8: 913ec000 add x0, x0, #0xfb0
 ffff000008a5f2fc: b900001f str wzr, [x0]
 ffff000008a5f300: f9400bf3 ldr x19, [sp, #16]
 ffff000008a5f304: a8c27bfd ldp x29, x30, [sp], #32
 ffff000008a5f308: d65f03c0 ret

perf script can send the CoreSight
sampling stream to python script so
utilize python script flexibility to post
process trace data, e.g. disassembly
with trace data with symbol files to get
readable program flow.

Branch sample

end_addr

start_addr

Python script

objdump

vmlinux

packet

packet

……

Agenda
● Statistical profiling on Arm platforms

○ Fundamental mechanism (for statistical profiling)
○ Profile with timer
○ Profile with PMU

● Using perf with tracing tools
○ Profile with ftrace
○ Profile with probes
○ Profile with CoreSight

● Debugging stories

The story - perf works with compiler for optimization

I want to optimize the performance
for my program and especially for
some small piece codes for
algorithm.

Does there have some advanced
methods for performance
optimization on Arm platform?

● The algorithm code might have complex logic,
so it have many branch instructions and
dependency when execution.

● Compiler is good at instruction scheduling
and reordering at compilation time and it
provides options -O3 for static optimization.

● Compiler is absent to know the program
execution runtime info, so perf profiling data
can be used as feedback by compiler and
explore more advanced optimization method.

Bubble sort example code https://gcc.gnu.org/wiki/AutoFDO/Tutorial

#define ARRAY_LEN 30000

void bubble_sort (int *a, int n) {
 int i, t, s = 1;

 while (s) {
 s = 0;
 for (i = 1; i < n; i++) {
 if (a[i] < a[i - 1]) {
 t = a[i];
 a[i] = a[i - 1];
 a[i - 1] = t;
 s = 1;
 }
 }
 }
}

7 2 5 4 3

2 5 4 3 7

2 4 3 5 7

……

https://www.google.com/url?q=https://gcc.gnu.org/wiki/AutoFDO/Tutorial&sa=D&ust=1537305975862000&usg=AFQjCNGSZ0OSwUSobtXqUJj5UWY3N0o8vA

Optimization with compiler flag -O3

Compile code without optimization:

gcc sort.c -o sort
./sort
Bubble sorting array of 30000 elements
35308 ms

Compile code with -O3 flag:

gcc -O3 sort.c -o sort_optimized
./sort_optimized
Bubble sorting array of 30000 elements
6621 ms

Feedback-Directed Optimization
Feedback-Directed Optimization (FDO):

Build an instrumented version of the program for profiling:

gcc sort.c -o sort_instrumented \
 -fprofile-generate

Run the instrumented binary and collect the
execution profile:

./sort_instrumented
Bubble sorting array of 30000 elements
45105 ms

Rebuild the program with feedback:

gcc -O3 sort.c -o sort_fdo \
 -fprofile-use=sort.gcda
./sort_fdo
Bubble sorting array of 30000 elements
6613 ms

FDO needs the instrumentation build and run
with poor performance to generate the training
data set, thus this is difficult for applying in
production.

Alternatively, the compiler can rely on profiling
data at the runtime as feedback, this can avoid
instrumentation build.

AutoFDO with perf

Automatic feedback-directed optimization
(AutoFDO) is to simplify deployment of
FDO by using the sampling of hardware
performance monitor.

Since perf can collect the branch related
information; the samples can be converted
to gcov format training data and at the
end this can be used by the compiler for
AutoFDO with low overhead.

Instrumented
binary

Collection
*.gcda

Rebuild
binary

FDO

perf profiling Convert to
*.gcov

Rebuild
binary

perf + AutoFDO

Arm doesn’t have last branch stack records ...
Statistical profiling helps identify a
particular code block is bottleneck, but it
has no idea what the code paths execution
to cause the bottleneck.

perf record provides -b for sampling
branch stack to log continuously branches,
this feature requires hardware support, e.g.
Intel CPU last branch records (LBR); this
can be used for feedback optimization.

 # perf record -b -e cycles:u ./sort
 # create_gcov --binary=./sort \
 --profile=perf.data --gcov=sort.gcov \
 -gcov_version=1

Though Arm PMU provides branch
statistical profiling, it doesn’t provide
branch stack sampling, as result it misses
to support -b option for last branch
records.

static int armpmu_event_init(struct perf_event
*event)
{
 [...]

 /* does not support taken branch sampling */
 if (has_branch_stack(event))
 return -EOPNOTSUPP;

 if (armpmu->map_event(event) == -ENOENT)
 return -ENOENT;

 return __hw_perf_event_init(event);
}

Inject samples for CoreSight trace data
 By decoding the branch packets, perf
inject can generate instruction samples
with N interval with option --itrace=iN.
Besides the instruction samples, it also can
artificially add last branch stack with option
--itrace=ilN.

perf report --itrace=i100il16 -k ./vmlinux --stdio
Samples: 2K of event 'instructions'
Event count (approx.): 2359
#
Overhead Command Source Shared Object Source Symbol Target Symbol Basic Block Cycles
........
#
 8.82% ls ls [.] 0x0000aaaaaf096d10 [.] 0x0000aaaaaf096d40 -
 8.82% ls ls [.] 0x0000aaaaaf096f24 [.] 0x0000aaaaaf096ce8 -
 8.82% ls ls [.] 0x0000aaaaaf0971e0 [.] 0x0000aaaaaf096f18 -
 8.77% ls ls [.] 0x0000aaaaaf0969e8 [.] 0x0000aaaaaf0971b8 -
 8.77% ls ls [.] 0x0000aaaaaf096d6c [.] 0x0000aaaaaf0969d0 -

…...

Branch sample

end_addr

start_addr

…...

Last branch stack sample

Branch
stack

…...

Instruction sample

ip

packet
packet

……

Use CoreSight for AutoFDO
Step 1: Capture CoreSight samples for
program:

perf record -e cs_etm/@825000.etf/u \
 --per-thread taskset -c 2 ./sort
Bubble sorting array of 30000 elements
39044 ms

Step 2: Read Coresight trace data and
inject synthetic last branch samples:

perf inject -i perf.data -o inj.data \
 --itrace=il64 --strip

Step 3: Convert the perf data into gcov
format:

create_gcov --binary=./sort \
 --profile=inj.data --gcov=sort.gcov \
 -gcov_version=1

Step 4: Rebuild binary with training data:

gcc -O3 -fauto-profile=sort.gcov sort.c \
 -o sort_autofdo

taskset -c 2 ./sort_autofdo
Bubble sorting array of 30000 elements
6609 ms

Thank You
For further information: www.linaro.org

This training presentation comes with a lifetime warranty.

All trainees here today can send any questions about today’s
session, at any point in the future, to support@linaro.org .

https://www.google.com/url?q=http://www.linaro.org&sa=D&ust=1537305976271000&usg=AFQjCNFce8kX8v__rojz-FxZ7juBK-MiZA
mailto:support@linaro.org

The story - Performance profiling for CPU cache
 When I profile performance for my
program, seems it has no performance
downgradation introduced by the
software architecture design and other
software factors like locking.

But the data throughput still doesn’t
look good enough, how can I explore
more performance improvement for
this?

● During performance optimization, the
software architecture design and locking
related optimization normally are the best
places to start… but will eventually plateau.

● If the performance issue is related with data
throughput or SMP performance, we might
need to improve the cache profile.

● We use one synthetic testing case to
demonstrate the debugging flow with using
PMU events for statistics and analysis for
CPU cache.

Statistics for cache hardware events

perf stat -a -e cache-references,cache-misses -- sleep 10

 Performance counter stats for 'system wide':

 5756626419 cache-references
 233027636 cache-misses # 4.048 % of all cache refs

 10.004134787 seconds time elapsed

We can use the event ‘cache-references’ to
count cache accessing times during the 10
seconds; the event ‘cache-misses’ is used
to count cache missing times. The big
amount of counting numbers indicate the
case has big pressure for cache.

Due the two events are enabled in the
same group, their value can be
compared and perf reports the ratio for
cache missing percentage: 4.048%. This
means it’s about one cache missing in
average of 25 times cache accessing.

Record and report cache event samples

perf report --stdio
Samples: 80K of event 'cache-references'
Event count (approx.): 5818036534
#
Overhead Command Shared Object Symbol
........
#
 54.39% cpu_hl_t1 [kernel.kallsyms] [k] cpu_thread1
 45.17% cpu_hl_t2 [kernel.kallsyms] [k] cpu_thread2
 0.09% swapper [kernel.kallsyms] [k] _raw_spin_unlock_irqrestore

Samples: 47K of event 'cache-misses'
Event count (approx.): 220719660
#
Overhead Command Shared Object Symbol
........
#
 99.41% cpu_hl_t1 [kernel.kallsyms] [k] cpu_thread1
 0.23% swapper [kernel.kallsyms] [k] _raw_spin_unlock_irqrestore
 0.08% cpu_hl_t2 [kernel.kallsyms] [k] cpu_thread2

Step 1: Record perf data for cache miss
perf record -a -e cache-references,cache-misses -- sleep 10

Step 2: Generate report for every event
From the ‘cache-references’
samples, it can locate the two
threads ‘cpu_thread1’ and
‘cpu_thread2’ are mainly
consumers for cache.

From the ‘cache-misses’
samples, it can locate the
thread ‘cpu_thread1’ are
heavily suffered by cache miss.

Review data structure

static int cpu_thread1(void *data)
{
 unsigned int val;

 do {
 val = shared.a;
 (void)val;
 } while(1);

 return 0;
}

static int cpu_thread2(void *data)
{
 unsigned int val, i = 0;

 do {
 shared.b += i;
 i++;
 } while(1);

 return 0;
}

volatile struct share_struct {
 unsigned int a;
 unsigned int b;
} shared;

‘cpu_thread1’ and ‘cpu_thread2’ threads access data in the same structure. If these two threads on
different CPUs then rely on snooping for cache coherency, ‘cpu_thread1’ will see cache invalidation
after data modification by ‘cpu_thread2’, this results in ‘cpu_thread1’ sees many cache missing.

Optimization cache line alignment
volatile struct share_struct {
 unsigned int a;
 unsigned int b ___cacheline_aligned;
} shared;

Add attribute ___cacheline_aligned
for item b in the structure so can allocate
separate cache line for item b.

perf stat -a -e cache-references,cache-misses -- sleep 10

 Performance counter stats for 'system wide':

 10669660594 cache-references
 833994 cache-misses # 0.008 % of all cache refs

 10.008088798 seconds time elapsed

Cache miss percentage
decreases from 4.048% to
0.008%.

Aside: Build perf tool
Method 1: Compilation perf on Debian/ARM64 platform

 # apt-get install flex bison libelf-dev libaudit-dev libdw-dev libunwind* \
 python-dev binutils-dev libnuma-dev libgtk2.0-dev libbfd-dev libelf1 \
 libperl-dev libnuma-dev libslang2 libslang2-dev libunwind8 libunwind8-dev \
 binutils-multiarch-dev elfutils libiberty-dev libncurses5-dev

 # git clone https://github.com/Linaro/OpenCSD
 # cd OpenCSD/decoder/build/linux/
 # make DEBUG=1 LINUX64=1 & make install

 # cd $KERNEL_DIR
 # make VF=1 -C tools/perf/

https://www.google.com/url?q=https://github.com/Linaro/OpenCSD&sa=D&ust=1537305977217000&usg=AFQjCNGyIXwPTYOr5dj2EowjcO-DpZW1rA

Aside: Build perf tool - cont.
Method 2: Cross-Compilation perf for ARM64 on x86 PC

 # export CROSS_COMPILE=aarch64-linux-gnu-
 # export ARCH=arm64

 # git clone https://github.com/Linaro/OpenCSD my-opencsd
 # cd OpenCSD/decoder/build/linux/
 # make DEBUG=1 LINUX64=1

 # export CSINCLUDES=my-opencsd/decoder/include/
 # export CSLIBS=my-opencsd/decoder/lib/builddir
 # export LD_LIBRARY_PATH=$CSLIBS

 # cd $KERNEL_DIR
 # make LDFLAGS=-static NO_LIBELF=1 NO_JVMTI=1 VF=1 -C tools/perf/

