

Evolution of load tracking mechanism in scheduler

Vincent Guittot

Agenda

- Introduction
- Main changes
- Usages
- Next steps

Introduction

- Per Entity Load Tracking (aka PELT)
 - Track the "load" of scheduler runqueues and entities
 - The time is divided in segment of 1ms (1024us)
 - \circ "load" = u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 - Geometric series with half period at 32ms ($y^32 = 0.5$)
- "Load" is made of 3 metrics:
 - Util_avg : running time
 - Load_avg : runnable time weighted with nice priority
 - Runnable_load_avg : For rq, this is the /Sum load of runnable entities

Introduction

Introduction

Main changes - v4.9

Power Consumption or anything else you want to display

Main changes since v4.9

- Propagate migration (v4.10)
 - Propagate utilization and load across rq tree
- Optimize load computation (v4.12)
 - Optimize algorithm
 - Increase accuracy of small tasks
- Stabilize load (v4.13)
 - o Take into account current position in 1ms time window
 - o Remove noise and instability in load

Main changes - v4.14 Power Consumption or anything else you want to display

Latest changes since v4.14

- New propagation mechanism (v4.15)
 - Include propagation of runnable load of sched_group
 - Improve task group share computation
- Deadline bandwidth (v4.16)
 - Implemented deadline "utilization"
 - Implemented invariance and OPP selection for SCHED_DEADLINE

Latest changes since v4.14

- Blocked idle (v4.17)
 - Idle CPU might be seen as busy
 - Decay blocked load and utilization
- Util est (v4.17)
 - Save last utilization before sleeping
 - Estimate final CFS utilization level
 - Start at final frequency

Latest changes since v4.14

- RT/DL utilization tracking (v4.19)
 - Track CFS stolen time
 - Track other class utilization
- IRQ utilization tracking (v4.19)
 - Track interrupt activity
 - Estimate full system utilization level

Main changes - v4.19

Power Consumption or anything else you want to display

Usage of PELT

- Task placement and load balance
 - o Balance the load across CPU and ensure fair distribution on runtime between tasks
 - Detect when CPU has capacity or is overloaded
 - o Compute spare capacity when selecting a CPU for task wake up
 - Compute share of a task group between CPUs
- Schedutil governor
 - Scale CPU frequency
 - Prevent spurious frequency switch
- Other usage ?

Next steps

- Thermal pressure
 - Similarly to RT, compute the capacity stolen by thermal mitigation
- Update scale invariance
 - Remove the capping of utilization and load by current frequency and micro architecture
- Use HW counter instead of time / frequency / microarchitecture
 - Current utilization is an estimation of CPU cycles used by a task
 - o Can't make difference between CPU bounded and Memory bounded task

Thanks

