
Evolution of 
load tracking mechanism

 in scheduler
Vincent Guittot



Agenda
● Introduction
● Main changes
● Usages
● Next steps



Introduction
● Per Entity Load Tracking (aka PELT)

○ Track the “load” of scheduler runqueues and entities
○ The time is divided in segment of 1ms (1024us)
○ “load” = u_0 + u_1*y + u_2*y^2 + u_3*y^3 + …
○ Geometric series with half period at 32ms (y^32 = 0.5)

● “Load” is made of 3 metrics:
○ Util_avg : running time
○ Load_avg : runnable time weighted with nice priority
○ Runnable_load_avg : For rq, this is the /Sum load of runnable entities

Run Sleep RunSleep Sleep

Run Sleep RunSleep Sleep

Wait Run Sleep WaitSleep Run Sleep

Task A

Task B

Runqueue 

util_avg

load_avg



Introduction

CPU util_avg = /Sum entity util_avg

TaskA util_avg

TaskB util_avg



Introduction

CPU load_avg = /Sum entity load_avg

TaskA load_avg

TaskB load_avg

CPU runnable_load_avg = /Sum runnable entity load_avg



no load/utilization 
propagation with 

migration

freq decreases when 
task migrates

unstable load 
for small task

load sharing inside 
group not updated

correctly

stalled load 
& utilization 
of idle CPUs

Main changes - v4.9 



Main changes since v4.9
● Propagate migration (v4.10)

○ Propagate utilization and load across rq tree

● Optimize load computation (v4.12)
○ Optimize algorithm
○ Increase accuracy of small tasks

● Stabilize load (v4.13)
○ Take into account current position in 1ms time window
○ Remove noise and instability in load



load/utilization 
propagate with 

migration

No freq changes 
when task migrates stable load for 

small task

stalled load 
& utilization 
of idle CPUs

load sharing inside 
group not updated

correctly

Main changes - v4.14



Latest changes since v4.14
● New propagation mechanism (v4.15)

○ Include propagation of runnable load of sched_group

○ Improve task group share computation

● Deadline bandwidth (v4.16)
○ Implemented deadline “utilization”

○ Implemented invariance and OPP selection for SCHED_DEADLINE



Latest changes since v4.14
● Blocked idle (v4.17)

○ Idle CPU might be seen as busy
○ Decay blocked load and utilization

● Util est (v4.17)
○ Save last utilization before sleeping

○ Estimate final CFS utilization level

○ Start at final frequency



Latest changes since v4.14
● RT/DL utilization tracking (v4.19)

○ Track CFS stolen time
○ Track other class utilization

● IRQ utilization tracking (v4.19)
○ Track interrupt activity
○ Estimate full system utilization level



load/utilization 
propagate with 

migration

load sharing inside 
group updated

correctly

load & utilization 
of idle CPUs 

decay

runnable load 
updated correctly

 (not displayed here)

frequency starts 
directly at final 

value

Main changes - v4.19



Usage of PELT
● Task placement and load balance

○ Balance the load across CPU and ensure fair distribution on runtime between tasks
○ Detect when CPU has capacity or is overloaded
○ Compute spare capacity when selecting a CPU for task wake up
○ Compute share of a task group between CPUs

● Schedutil governor
○ Scale CPU frequency
○ Prevent spurious frequency switch

● Other usage ?



Next steps
● Thermal pressure

○ Similarly to RT, compute the capacity stolen by thermal mitigation

● Update scale invariance
○ Remove the capping of utilization and load by current frequency and micro architecture

● Use HW counter instead of time / frequency / microarchitecture
○ Current utilization is an estimation of CPU cycles used by a task
○ Can’t make difference between CPU bounded and Memory bounded task



Thanks


