EAS Update

ARM

September 2015

Amit Kucheria – Linaro Technical lead – Power Management Robin Randhawa – ARM Powersoft Tech lead Ian Rickards – ARM Powersoft Product Manager

Motivation

- Hardware topologies are becoming more varied,
 accommodating different power/performance budgets:
 - SMP, multi-cluster SMP, ARM big.LITTLE technology.
 - Per core/per cluster DVFS
 (Dynamic Voltage & Frequency Scaling)
- Linux power management frameworks are uncoordinated and hard to tune for different topologies.
- We need a common upstream solution to minimize software costs.

All policy, all metrics, all averaging should happen at the scheduler power saving level, in a single place, and then the scheduler should directly drive the new low level idle state driver mechanism.

Goals

Introduce generic **energy-awareness** in upstream Linux:

- 1. Integrate Idle, DVFS, scheduler big.LITTLE support
- 2. Clean design rather than short-cuts.
- 3. Based on measureable **energy model** data rather than magic tunables.
- 4. Support future CPU topologies
- 5. Maintained in upstream Linux, reduced software maintenance costs.

ARM development

Power Fundamentals

Static Power

- Area of silicon (mm2)
- Threshold voltage (Vt)
 - "Low Vt" implementation faster but more leaky
 - "High Vt" implementation slower
- Temperature

Dynamic Power

Toggling nodes x capacitance x voltage

OS task scheduling – throughput policy

Scheduling policy decides task placement

 Affect performance and energy consumption.

Mainline Linux policy is 'work preserving'

- Considers only maximizing throughput.
- DVFS and idle-states controlled by independent policy governors.

Designed for SMP, **not energy-aware**

OS task scheduling – energy-aware policy

Energy-Aware Scheduling (EAS) policy:

 Pick CPU with sufficient spare capacity and smallest energy impact.

Requirements:

- 1. Tracking of task utilization.
- 2. Platform energy model.

Supports all topologies, including SMP and big.LITTLE.

What is EAS – the energy model

EAS

New Energy Aware Scheduling

- Generic energy model based approach fits all platforms and topologies.
- Foundation for further enhancements.

vs big.LITTLE HMP

Existing **Heterogeneous MP patchset**

- big.LITTLE topology only.
- Hard coded behaviors.
- In Linaro LSK kernels (not mainline).

DVFS in Linux (cpufreq)

 Sampling based governors are slow to respond and hard to tune.

 Sampling too fast: OPP changes for small utilization spikes.

 Sampling too slow: Sudden burst of utilization might not get the necessary OPP change in time.

Scheduler-driven DVFS

 With scheduler task utilization tracking DVFS can be notified immediately when CPU utilization changes = improved responsiveness.

SchedTune

Current:

• A set of governor-specific tunables.

Goal:

 Single tunable to bias the energy/performance trade-off.

Prototypes:

- Global boost tunable: /proc/sys/kernel/sched_cfs_boost
- Task group (cgroup) based tuning: /sys/fs/cgroup/stune/<group>/schedtune.boost

Tunability improvements

Existing CFS with HMP

HMP tunables	hmp_domains, up_threshold, down_threshold, packing_enable, packing_limit, frequency_invariant_load _scale
Interactive governor	min_sample_time, hispeed_freq, go_hispeed_load, above_hispeed_delay, timer_rate, input_boost, boost, boostpulse

EAS

EAS tunables	NONE - energy model only
SchedTune	'boost' margin { boost, boostpulse }

Analysis tools

Tool name / function	Location
rt-app/ WorkloadGen (Linaro) Variable-intensity workload generator for Linux	https://wiki.linaro.org/WorkingGroups/PowerManagement/Resources/Tools/WorkloadGen
workload-automation (ARM) Automating benchmark runs and ftrace log capture (Linux, Android, ChromeOS)	https://github.com/ARM-software/workload-automation
TRAPpy (ARM) Python-based visualization tool to help analyze ftrace data generated on a device. Uses ipython & javascript	https://github.com/ARM-software/trappy
BART (ARM) Behavior Analysis Regression Testing Thread residency checker, used as the framework for regression testing for EAS.	https://github.com/ARM-software/bart
Idlestat (Linaro) Idlestat uses kernel ftrace to monitor and capture C-state and P-state transitions of CPUs over a time interval.	https://wiki.linaro.org/WorkingGroups/PowerManagement/Resources/Tools/Idlestat
kernelshark XII/GTK tool for analysis of ftrace data, useful for detailed scheduler analysis but does not offer the API capability of 'trappy' above.	http://people.redhat.com/srostedt/kernelshark/HTML/

Upstream progress

Current patchsets for review/testing

Patchset	URL
Scheduler driven DVFS PATCH v3	https://lkml.org/lkml/2015/6/26/620
EAS RFCv5	https://lkml.org/lkml/2015/7/7/754
SchedTune proposal	https://lkml.org/lkml/2015/8/19/419
Foundational Patches (frequency and microarchitecture contribution to capacity/utilization, split out from RFCv5) (already queued for merging!)	https://lkml.org/lkml/2015/8/14/296
Yuyang Du PELT rewrite v10 containing ARM enhancements to utilization calculation (<i>already queued for merging!</i>)	https://lkml.org/lkml/2015/7/15/159

Request reviewers to send 'tested-by' or 'acked-by'

EAS RFCv5 update – posted 7-Jul-2015

- Linaro sched-DVFS integration + ARM improvements
- Maps all 6 HMP behaviors
- Landed on ChromeOS
 - (Linux 3.18 kernel)
- SchedTune equivalent to 'interactive'

HMP behaviors	Equivalent in EAS?
Wake migration	Yes – from wakeup pathways
Fork migration	Yes – new task initialized to max load
Forced migration	Yes – from periodic load balance
Idle-pull migration	Yes – from idle load balance
Offload migration	Yes – one task per CPU
Small task packing	Yes – built into design. From energy model.

Results – RFCv5 @ ARMTC2

EAS Near-term Plans

LSK 3.18

• (Linaro – targeting 15.10) allowing direct HMP vs. EAS comparisons

Testing

- Use-cases (ChromeOS then Android)
- More platforms can you help test?

Android testing & tuning targeting December 2015

Starting with HMP sched_tests, migrating to 'bart' tests

Productization

- Analysis tools / test suites / tuning flow & documentation
- Energy model flow (based on power/perf measurements of dhrystone or sysbench)

EAS Needs YOU!

