
Presented by

Date

Event

SFO15-T2: Upstreaming 101
Daniel Thompson

Tuesday 22 September 2015

SFO15

● Focus is on Linux kernel upstreaming
● What is upstreaming?

○ Define what it is first
● How to upstream?

○ Process and mechanics
● Target audience

○ Developers
○ Engineering managers

Overview

● Familiar with source code control concepts
● Familiar with git terminology (pulls, topic branches, etc.)
● Technical understanding of kernel level software

Prerequisites

● Linux kernel context
● Upstream means to move software into the top level

Linux repository
● This is Linus Torvalds' Linux repository (aka “mainline”)

What is upstreaming?

What is mainline?

https://kernel.org

https://kernel.org
https://kernel.org

from list of top 4.2 contributors: http://www.remword.com/kps_result/4.2_whole.html

Who Exactly Contributes to Mainline?

http://www.remword.com/kps_result/4.2_whole.html

● Distinct hierarchy of repositories
● Repositories are git trees

○ One or more topic branches that feed into the
mainline kernel

● Different owners for each repository in the tree

Swimming upstream to mainline

Upstream code flow

● Component code owners
○ Subsystem
○ Driver(s)
○ Filesystem
○ Architecture/platform

● Responsible for a slice of the kernel tree
● Gatekeepers

○ Control acceptance of incoming patches
○ Acceptance criteria varies

Maintainers

● 1033 unique maintainers in v4.2
$ grep "^M:.*" MAINTAINERS | sort | uniq | wc -l
1033

● Each subsystem/component has one or more maintainers
● Example MAINTAINERS entry:

ARM PORT
M: Russell King <linux@arm.linux.org.uk>
L: linux-arm-kernel@lists.infradead.org …
W: http://www.arm.linux.org.uk/
S: Maintained
F: arch/arm/

Maintainer numbers

● Merge windows open every 10 weeks +/- 1 week
● Merge window is open for 2 weeks
● New functionality is only taken into Linus Torvalds' tree

during the merge window

Understanding Merge Windows

● Merge window planning
○ New functionality needs to be accepted in maintainer

trees usually by the -rc6 or -rc7 release
○ After -rc7 most maintainers will only be accepting

fixes
● Less than 7 weeks after a merge window closes to have

a maintainer queue a patch for the next merge window.

Understanding Merge Windows

● Preparation
● Creation
● Posting
● Feedback
● Maintenance
● How Long Does it Take?

How to Upstream?

● Know your content
○ Your contribution fits into a kernel framework. What is

it?
○ Write your contribution to conform to the current

framework standards and kernel APIs
● Know who else is doing work in your area upstream

○ Is anybody doing work related to the framework that
could affect framework APIs?

Preparation

● Review Documentation/* for clarification on APIs and
frameworks

● Review Documentation/devicetree/bindings/* for
clarification on Device Tree bindings and best examples

● Read devicetree mailing list to learn about DT best
practices
○ http://vger.kernel.org/vger-lists.html#devicetree

Preparation

http://vger.kernel.org/vger-lists.html#devicetree
http://vger.kernel.org/vger-lists.html#devicetree

● On what mailing lists and IRC channels are similar
contributions discussed?
○ Follow these forums and understand the direction

the frameworks are moving in APIs and style.
○ Ask questions, if necessary, to clarify what APIs to

make use of before writing your code.
● Read linux-arm-kernel, at a minimum

○ http://lists.infradead.org/mailman/listinfo/linux-arm-kernel
● #armlinux on freenode for ARM kernel discussions

Preparation

http://lists.infradead.org/mailman/listinfo/linux-arm-kernel
http://lists.infradead.org/mailman/listinfo/linux-arm-kernel

● Read and understand
○ Documentation/SubmittingPatches
○ Documentation/SubmitChecklist
○ Documentation/devicetree/bindings/ABI.txt
○ .../devicetree/bindings/submitting-patches.txt
○ Greg Kroah-Hartman, "How to piss off a kernel subsystem

maintainer".
 http://www.kroah.com/log/linux/maintainer.html
 http://www.kroah.com/log/linux/maintainer-02.html
 http://www.kroah.com/log/linux/maintainer-03.html
 http://www.kroah.com/log/linux/maintainer-04.html
 http://www.kroah.com/log/linux/maintainer-05.html
 http://www.kroah.com/log/linux/maintainer-06.html

Preparation

http://www.kroah.com/log/linux/maintainer.html
http://www.kroah.com/log/linux/maintainer-02.html
http://www.kroah.com/log/linux/maintainer-03.html
http://www.kroah.com/log/linux/maintainer-04.html
http://www.kroah.com/log/linux/maintainer-05.html
http://www.kroah.com/log/linux/maintainer-06.html

● Use git for code management
● Logical division of commits

○ Small changes
○ Functionality
○ Individually complete (bisectability)

● Logical commits allow for ease of review and speed
acceptance

Creation

● Multipart series subject line
○ Subject: [PATCH 01/11] subsystem: summary

phrase
●Version 3 of a single patch submission

○ Subject: [PATCH v3] subsystem: summary phrase
●RFC patch submission

○ Subject: [PATCH RFC] subsystem: summary phrase

Creation

● Take time to create a quality commit log message
○ Why the patch is needed
○ What the patch implements
○ How the patch is implemented.
○ “The conditional in foo() did not handle case bar and

broke platform baz. Add an additional conditional
and error path to foo() to handle bar.”

● Each commit must have a well-formed commit log

Creation

● Create patches with git format-patch
○ --cover-letter for a patch series
○ The cover letter contains an overview describing the

purpose and scope of the entire series.
● Use scripts/checkpatch.pl to verify coding style and

semantics
● Use scripts/get_maintainer.pl to verify maintainer list for

submission.

Creation

● Post patch or patch series
○ Maintainers on To:
○ Mailing lists on Cc:
○ Other interested parties on Cc:

● Use git send-email to post patches/series
● Expect comments!

Posting

● No response
○ Be patient, maintainers are very busy
○ Wait one week to resend if no response

● Tough questions
○ Be prepared to justify your decisions or approach in great

detail
○ Maintainers aren't always correct, be strong and concise

in your justifications
○ If you don't understand a comment, ask for clarification
○ Don’t ignore comments!

Feedback on Mailing Lists

● Use a sane email client
○ Plain text wrapped at 72 columns (unless its a diff)
○ Working threading
○ Saves messages in a format git understands
○ Advice on configuring various mail user agents

■Documentation/email-clients.txt
● Getting flamed

○ No need to worry about this if you are following the
documented practices.

Feedback on Mailing Lists

● Making changes
○ Be responsive! Address comments via discussion and come to

a conclusion quickly
○ Incorporate agreed upon comments and quickly submit a new

version
○ Be prepared to not get an acceptable comment resolution on

the first try
○ Expect many iterations

● Resubmission
○ Increment the version number in the subject line for the patch

series and include a changelog

Feedback on Mailing Lists

● Once accepted, now what?
○ Need to follow mailing lists for upcoming changes
○ Help review any new changes within the same area

as your contribution
○ Test, test, test

Maintenance

● Preparation is key to success
● RTFM on everything
● Ask questions
● Act with a sense of urgency on comments
● Understand merge window timing

Summary

