

Autoware foundation

PREMIUM

Parkopedia

Velodyne LiDAR

INDUSTRY & GOVERNMENT

CONSULTANCY SERVICES cādence°

ACADEMIC & NON-PROFIT MEMBERS

Components in Autoware

Analysis and Diagram produced by Jiang Xiang (Arm) jiang.xiang@arm.com

Components of a AD system

The main functions and algorithms

Localization

- Lidar localization
 - NDT matching
- Visual-inertial localisation

Perception

- Visual Object Detection
 - CNN
- Lidar Object Detection
 - Euclidean Clustering
- Traffic Light Detection
 - CNN
- Lane detection
 - Computer Vision

Planning

- Mission Planning
- Motion Planning
 - A* or State Lattice

Perception: Visual Object/Traffic Light Detection

Convolutional Neural Networks

- Algorithm
 - Large number of floating point/integer arithmetic operations
 - Fixed latency
- Hardware
 - Cortex-A ArmV8 CPU with NEON
 - Mali GPU with OpenCL acceleration
 - Arm Machine Learning Processor
 - 8 bit integer accelerator
 - CNN and RNN graph runner
- Software
 - ArmNN
 - Arm Compute Library
 - Mali SDK

Autoware Object detection node running on Arm target. Using ArmNN and OpenCL backend for acceleration. This work is carried out by Eliot Lim (Arm). See the demo later in the demo area.

Perception: Object Detection Node

Yolo-tiny running in a ROS node using ArmNN inference engine

Perception: Traffic Light Detection

The current approach

HD map approach

- Rely on HD map to provide exact location of light bulbs
- Manually calibrate against sensor intrinsic and extrinsic

HD map + CNN

- Rely on HD map to provide Region of Interests
- Use a CNN to do detection and classification within the Rol

Disadvantages

- Not robust against the posture of vehicle/camera
- Cannot deal with temporary lights or outdated map
- Cannot deal with varying shapes and sizes of traffic lights

Perception: Traffic Light Detection

Proposal for Improvement

New flexible architecture

- Support different implementation in one architecture
- Allow maximum code reuse

Traffic light detection and classification

- Traffic light recognition and classification in a single CNN
- Maximum hardware acceleration
- Minimum latency due to transferring of data between stages
- Arm specific optimizations
 - Tflite compatible
 - 8-bit quantization

Perception: Euclidian Clustering

Grouping of points that are close together - Classification

- Down-sampling of input data
- K-d tree nearest neighbour search
 - implemented in **FLANN** library

Analysis carried out by Anouk Van Laer (Arm) anouk.vanlaer@arm.com

Localization: NDT Matching

Point cloud manipulation

- Single Thread on Arm
- CUDA acceleration available
- OpenMP implementation is not up to date

Future Work

Performance optimization

- Hardware Acceleration
 - SVE/SVE2
 - OpenCL
 - ML Processor
- Memory/Latency optimisation

New Algorithms

- CNN based lane detection
- LSTM for object detection
- Visual-inertial localisation

Simulation

- Enable running Autoware distributed on multiple pieces of hardware
- Enable full stack working with simulators

Arm Targets

- Maintain Autoware build for Arm targets, ensure all functionality work and continue to work.
- Maintain cross compilation
- Support new Automotive
 SoCs and reference platforms

arm

† Thank You

Danke

Merci

・ 谢谢 ありがとう

Gracias

Kiitos

감사합니다

धन्यवाद

شکرًا

תודה

© 2019 Arm Limited

⁺The Arm trademarks featured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks