
Community Driven
UEFI Open Source
Project
SAN19-508

We have experienced very successful open source development for
Linux operating system. But in the firmware area, most of the
developments are carried out by some major organizations with limited
participation of community. Application driven open source
development enables a software system ecosystem which can adopt
various hardware components, including different architectures, and let
the vendors deferential and create tangible results. Open source
firmware and Standard firmware interface is critical to enable different
hardware implementations for the same ecosystem

Firmware Open Source Motivation

Application OS Firmware

Platform3

Platform2

Platform1

Open Source Firmware Development Consideration
● General System Firmware not specifically targeted at phone, client, server or cloud
● Universal interface supporting multiple OSes including Linux and Windows
● Adaptive to various silicon especially silicon provided by member companies
● Community driven open source development model
● Encourage open technology and early standard implementation
● Code first path finding model
● Primarily use permissive free software licenses
● Long Term Stable instead of product driven

We may not consider

• Find an open source solution for an existing platform design

• Reverse engineering existing code

• Do not force to use GPL free software license

System Firmware Components in a typical solution

Core Silicon Platform

• Generic

Framework

code

• Standard

services lib

• Industry

Standard

such as PCIe

support

• Easy to open

source

• CPU

architecture

specific code

• Silicon Vendor

driver code

• Third party

support

module

• Very much

vendor specific

• Platform

configuration

• Data tables

• Advanced

feature

implementation

such as RAS

• Should be as

open as

possible such

that people can

utilize them

Keep Healthy Ecosystem
● Silicon vendor

○ SoC
● IP provider

○ PCIe
● IBV
● ODM
● OEM
● Cloud Provider
● Software Service provider
● OS vendors
● Open source application
● Commercial software

Protect silicon vendor IP
● Open source firmware has been driven by cloud providers such as Google and

Facebook
● Due to the complexity of hardware such as memory controller, the successful

Linux OS approach is not able to meet the requirement at firmware level.
● We would like to separate the kernel code for EDK implementation and the silicon

code for EDK such that the silicon code can be more flexible to accepting 3rd party
open source code with different license model.

● Linaro can setup the architecture and only take care of the kernel, but treats the
silicon code or binary module as plugin with known interfaces

● May include some mature silicon modules such as SBSA compliant modules for CI
test.

● Modular structure and BSD license is preferred

LTS UEFI Firmware for ERP
● Enterprise companies has a lot of hardware products and the life cycle of these

systems could be more than 10 years, such as telecom equipment's. Linux OS has
been used widely in this market. Linux kernel has LTS management such it can
well matches the long term support requests.

● UEFI forum defines the interfaces for hardware and software using UEFI and ACPI
standards. The implementation of the firmware is flexible but dominated with PI
specification. These type of firmware source code are hosted by the tianocore
project in github and is referenced as EDK implementation.

● If we compare EDK code with Linux code, we can see many differences. The most
obvious one is that the long term stable label is not there. Current EDK has
released “stable label” quarterly , but there is no LTS concept.

● Due to the multiple vendor nature, it will greatly benefit the industry if we have
LTS label for ARM based platform.

Firmware Interfaces
Many vendor specific interfaces are widely used and they are keeping evolve.

Example:

IFWI: Intel firmware interface

FSP API: Intel Firmware support package

ARM: PSCI, SCMI, SPCI

It will be nice to use Industry standard interfaces or detectable open source interfaces

UEFI, ACP and PI are good examples

Industry Open Source Firmware Efforts

MISSION
Change the way of firmware

development, collaboration with

others and share knowledge

Scope
Supports all processor architectures found in the web-

scale data center.

Support for cloud operating systems

Support for compute (GP & AI/ML/FPGA), storage, &

network devices.

Development and deployment tools

Security feature

https://www.opencompute.org/projects/open-system-firmware
https://osfc.io

https://www.opencompute.org/projects/open-system-firmware
https://osfc.io/

U-Boot

Reference: OSFC, 2019 State of U-Boot Development Report

by Jagan Teki, Amarula Solutions

Coreboot
Coreboot is an extended firmware platform that delivers a lightning fast and secure
boot experience on modern computers and embedded systems. As an Open Source
project it provides auditability and maximum control over technology.

https://www.coreboot.org

https://www.coreboot.org/

Facebook OSF Solution Using Coreboot

Reference: OSFC 2019 Build coreboot/linuxboot firmware for Facebook OCP platform

By Jonathan Zhang and Morgan Jang

LinuxBoot

https://www.linuxboot.org/

https://www.linuxboot.org/

Innovations with LinuxBoot

LinuxBoos enable people with fundamental

computer OS knowledge to explore various

possibilities

Minimum platform Approach
Staged implementation to address one size fit all problem

Reference: OSFC 2019 Minimum Platform: Open Source UEFI Firmware for Intel Based Platforms

By Michael Kubacki

https://edk2-docs.gitbooks.io/edk-ii-minimum-platform-specification/

https://edk2-docs.gitbooks.io/edk-ii-minimum-platform-specification/

Various

Payloads
Various

Payloads

Heterogeneous Approach
Allow multiple vendors to contribute their own solution in one framework

Memory Controller

SCP/MCP

BMC

FPGA

GPU

System

Firmware

Framework
Various

Payloads

UEFI/Shell

Tools

Transient

OS Tools Various

Payloads

ACPI

ATF

Linux Kernel

Fast Boot Consideration
software should not be a barrier for speed

● Resume from previous configured data
○ S4 resume instead of regular boot

● Only initialize necessary components
○ Jump through non-IPL device

● Fixed initialization sequence

● Parallel program
○ Multi-processor/thread initialization

DIX8DIX7DIX6DIX5DIX4DIX3DIX2DIX1

DIX8DIX7DIX6DIX5DIX4DIX3DIX2DIX1

DIX8DIX7DIX6DIX5DIX4DIX3DIX2DIX1

DIX8DIX7DIX6DIX5DIX4DIX3DIX2DIX1

DIX8DIX5DIX4DIX1DIX7DIX6DIX3DIX2

Coexisting with non-UEFI modules
• Arm Trusted Firmware is

a key component in

EDK2 firmware and

other firmware solutions

• Due to its general

usages, it may not be

used as UEFI

compatible extensions

similar to Intel FSP

• RUN time services

should be used

conservatively after the

OS has started

• Consider to implement

UEFI PI compatible

interface similar to

FSP2.1

Effort to use kernel tools in EDK2
Utilize the experience from OS kernel

Reference: OSFC 2019 Hardening Firmware Components with Host-based Analysis Tools

By Brian Richardson

Burden the tools
Automation making the initial development easier

• UEFI SCT - https://github.com/tianocore/edk2-test

• FWTS – https://wiki.ubuntu.com/FirmwareTestSuite

Reference: OSFC 2019 An update on Dynamic Tables by Sami Mujawar

• Dynamic Tables Framework

ACPI
 AML Generation

 Device Tree Translation

SMBIOS

• ACPIView

https://github.com/tianocore/edk2-test
https://wiki.ubuntu.com/FirmwareTestSuite

Call for Actions
A Linaro Recommended Approach

● Support large scale arm based system deployment from numerus vendors
○ Try to support complex server to simple IoT

● Leverage all the efforts we have made in the past a few years
○ SBSA QEMU Machine (https://connect.linaro.org/resources/yvr18/sessions/yvr18-511/)

■ The goal is to have a complete open platform with basic support for SBSA 3 features

○ SBSA QEMU Machine Firmware Prototype
○ CI for Running SBSA Test Suite on QEMU Machine
○ EDK2 Maintainer ship

● New efforts suggestions
○ UEFI LTS similar to UDK2018 but modified and verified with arm based platforms not

necessary QEMU platform
○ Remove any advanced server features and make them installable packages for cloud,

storage, edge and PC
○ Work with ATF and ACPI such that these are also become installable
○ Reducing the footprint for Mobile and IoT device similar to minimum platform

https://connect.linaro.org/resources/yvr18/sessions/yvr18-511/

Thank you
Join Linaro to accelerate deployment of your Arm-
based solutions through collaboration

contactus@linaro.org

kangkang.shen@futurewei.com

mailto:contactus@linaro.org

