HDCP SUPPORT IN OPTEE

Linaro Multimedia Working Group
• https://www.linaro.org/

SEPTEMBER 2019

PRODUCT PRESENTATION
MICR ADVANCED TECHNOLOGIES

SECURE CONNECTIONS
FOR A SMARTER WORLD
Agenda

- Quick introduction to HDCP
- Secure Video Path overview
- Current HDCP control in Linux
- Proposal to control HDCP in OPTEE
- Questions
HDCP OVERVIEW
HDCP: High bandwidth Digital Content Protection

- A digital copy protection developed by Intel™ to prevent copying of digital and audio video content. Before sending data, the source device shall check the destination device is authorized to receive it. If so, the source device encrypts the data, only the destination device can decrypt.
 - data encryption
 - prevent non-licensed devices from receiving content

- Android and Linux NXP bsp manage HDCP at Linux Level, through libDRM. So nothing prevent a user to disable HDCP protection while secure content is under playback. It is a security holes in the Secure Video Path.

- HDCP support currently under development for wayland/Weston:
 https://gitlab.freedesktop.org/wayland/weston/merge_requests/48

- No Open Source solution exists to manage HDCP in secure mode.

- HDCP versions:
 - HDCP 1.X: Hacked: Master key published (leak/reverse engineering)
 - HDCP 2.0: Hacked before release
 - HDCP 2.1: Hacked before release
 - HDCP 2.2: Not yet hacked
 - HDCP 2.3: Not yet hacked
HDCP control state Machine

Content with HDCP protection mandatory

- no
 - Local display
 - yes
 - Video displayed without HDCP encryption
 - yes
 - HDCP supported
 - yes
 - Video displayed without HDCP encryption
 - yes
 - Video displayed Application to decide if HDCP encryption to be used
 - no
 - Video displayed without HDCP encryption
 - yes
 - Video not displayed
 - Application to display a Warning message “HDCP Unauthorized, Content Disabled. Error.” or to let video secure data path to replace protected content by 0
 - no
 - Video not displayed

- yes
 - Local display
 - yes
 - Video displayed without HDCP encryption
 - yes
 - Video displayed Application to decide if HDCP encryption to be used
 - no
 - Video displayed without HDCP encryption
 - yes
 - Widevine/PlayReady To check current HDCP version >= expected HDCP version
 - no
 - Video not displayed

It means we have analog display
SECURE VIDEO PATH OVERVIEW
Secure Video Path to protect video content inside the device

I.MX 8MQ Secure Video Path with Android bsp – Hong Kong Connect 2018:

- Slides:

- Demos:
 https://www.youtube.com/watch?v=z27TI5XkFJ4

I.MX 8MQ Secure Video Path with Linux bsp – San Diego Connect 2019

- Slides:
 https://static.sched.com/hosted_files/linaroconnectsandiego/d6/Linux%20DRM%20Support%20iMX8M%20Architecture%20Description%20v1.2.pdf
Secure Data Path on i.MX 8M
RDC: Resource Domain Controller

- Assignment of cores and bus masters to a resource domain (4 domains, 27 bus masters)
- Peripherals and memory regions assigned right accesses based on domain IDs (118 Peripherals, 52 memory regions)
- Memory read/write access controls for each resource domain and region (up to 8 regions per domains)

Use a configuration set at boot (within ATF)
Registers locked till next reset/reboot
Secure Video Path on i.MX 8MQ

- **CPU**: RW, CAAM R
- **CAAM**: VPU RW, CAAM W
- **VPU**: Decoded and decrypted video
- **GPU**: *R*, DCSS R, GPU R
- **DCSS**: HDMI, HDCP
- **SDMA**: USB, PCI, ..., RW

Notes:
- **CPU**: RW, CAAM R
- **VPU**: R, CAAM W
- **GPU**: *R*, DCSS R, GPU R

R/W access to registers only, not DDR memory

DCSS: Display Controller Sub System: to source up to three display buffers, on the fly composition (3 scalers, PIP) and drive display using HDMI 2.0a with HDCP 1.4 or 2.2
HDCP MANAGEMENT BY LINUX
HDCP very high level requirements:

• User Application shall be able to disable/enable HDCP content protection, allowing users to record clear content, or to encrypt content according to the security policy of the content to prevent illegal copying of digital content.

• User Application shall be able to notify user when HDCP versions is not compliant with content to be displayed.

Problems:

RDC can protect the HDCP registers, but only by using static configuration of HDCP registers. This is not compliant with requirements, as we need to reconfigure HDCP configuration dynamically depending the display connected to the device, or the video content to be displayed.

Conclusion:

we need to protect HDCP registers with TZASC, and make sure REE doesn’t disable HDCP protection while secure video is displayed.
i.MX 8MQ – HDCP today managed by libDRM (Direct Rendering Manager)

Access to HDCP configurations and status done through “Content Protection” property / IOCTL by KMS/DRM

DRM_MODE_CONTENT_PROTECTION_UNDESIRED = 0
DRM_MODE_CONTENT_PROTECTION_DESIRED = 1
DRM_MODE_CONTENT_PROTECTION_ENABLED = 2

Non-secure domain -

Secure domain -

Secure Driver
Non secure driver

REE
Application (Android APK, Java, native, Web browser ..,)
User Space (Linux/Android) - libDRM
Kernel Space (Linux)
DRM (Direct Rendering Manager) / KMS

Hardware
HAB
SNVS
TZASC
RDC
CAAM
RTC
RNG

Secure Driver

VPU
DCSS/HW composer
GPU
HDMI controller
HDCP cypher
I.MX 8MQ – current HDCP management in Linux

- HDCP support for i.MX 8MQ: available since NXP Linux bsp 4.14.98-2.0.0_ga:

 $ repo sync
 $ DISTRO=fsl-imx-xwayland MACHINE=imx8mqevk source ./fsl-setup-release.sh -b build-xwayland
 $ bitbake fsl-image-qt5

- HDCP configured and managed by Linux:

 ./imx8mqevk/kernel-source/drivers/gpu/drm/imx/hdp/imx-hdp.c
 ./imx8mqevk/kernel-source/drivers/gpu/drm/msm/hdmi/hdmi_hdcp.c

- HDCP IP is not available for all i.MX 8MQ socs.

- HDCP not enabled by default. Weston service shall be stop prior to enable it.
 systemct1 stop weston.service
 modetest -w 46:"Content Protection":1
 systemctl start weston.service

- Hardware IP from Cadence, with non-open source firmware.
HDCP MANAGEMENT BY OPTEE
HDCP managed by OPTEE

Prevent Linux to change HDCP configuration:
 -> TZASC used to protect HDCP registers.
 -> Trusted Application to write and read HDCP registers.

Provide a trusted mechanism for third party Trusted Application (Widevine/PlayReady) to get HDCP status/version, without relying on REE OS.

Open Source HDCP Trusted Application, monitoring HDCP register access, to block configuration changes while Widevine/PlayReady session are open.

Open Source OEM HDCP API allowing soc manufacturers to add support of their own HDCP hardware IP.

Most part of HDCP driver remains at REE OS level. A small OPTEEE proprietary driver shall allow TEE OS to read and write into the registers.
i.MX 8MQ – HDCP proposal managed by libDRM and OPTEE

- Secure Domain
 - OPTEE
 - OPTEE CORE
 - OPTEE libs
 - I.MX8M Proprietary HDCP API
 - OEM HDCP HAL API
 - TEE client API
 - TEE supplicant
 - Non-secure Domain
 - User application
 - libdrm
 - TEE driver
 - Direct Rendering Manager
 - Storage, ...
 - Non secure HDCP driver
 - GPU driver
 - HDMI driver
 - DCSS driver
 - Secure i.MX8M HDCP driver
 - Secure HDCP HW
 - CAAM driver

- Non-secure Domain
 - Inter HDCP API
 - Inter HDCP API
 - Inter HDCP API

- New components
 - I.MX8M Proprietary HDCP API
HDCP TA API 1/3

HDCP_Result ta_hdcp_get_capability(uint32_t param_types, TEE_Param params[4]);

Description:

Returns the **maximum** HDCP version supported by the device, and the **current** HDCP version supported by the device and any connected display. This function shall return HDCP_ERROR_INTERNAL_ERROR for any errors returned from OEM internal secure HDCP API.

Parameters:

param_types (in): TEE_PARAM_TYPES(TEE_PARAM_TYPE_VALUE_OUTPUT,
 TEE_PARAM_TYPE_NONE,
 TEE_PARAM_TYPE_NONE,
 TEE_PARAM_TYPE_NONE);

params[0].value.a (out) : this is the current **HDCP_Capability**, based on the device itself, and the display to which it is connected.

params[0].value.b (out) : this is the maximum supported **HDCP_Capability** version for the device, ignoring any attached device.

Threading:

This function may be called simultaneously with any other functions.

Returns:

HDCP_SUCCESS
HDCP_ERROR_BAD_PARAMETERS
HDCP_ERROR_INTERNAL_ERROR
HDCP TA API 2/3

HDCP_Result *ta_hdcp_open_session*(uint32_t *param_types, TEE_Param *params[4]);

Description:
Shall be called by Widevine and PlayReady TA to open an HDCP Session, and notify HDCP TA a secure
video path is used. This function shall support the maximum number of session supported by Widevine and
PlayReady TA -> (50 for Widevine, 1 for PlayReady). By calling this function, Widevine and PlayReady TA register
their session to the HDCP TA.
If maximum of session the HDCP TA is able to manage has been reached,
HDCP_ERROR_TOO_MANY_SESSIONS shall be returned.

Parameters:
• *param_types* (in): TEE_PARAM_TYPES(TEE_PARAM_TYPE_VALUE_OUTPUT,
 TEE_PARAM_TYPE_NONE,
 TEE_PARAM_TYPE_NONE,
 TEE_PARAM_TYPE_NONE);
• *params[0].value.a* (out) HDCP_SESSION

Threading:
This function may be called simultaneously with any other functions.

Returns:
HDCP_SUCCESS
HDCP_ERROR_BAD_PARAMETERS
HDCP_ERROR_TOO_MANY_SESSIONS
HDCP TA API 3/3

HDCP_Result ta_hdcp_close_session(uint32_t param_types, TEE_Param params[4]);

Description:
Shall be called by Widevine or PlayReady TA to close an existing HDCP Session, and notify HDCP TA a secure video path is still needed or not. If session doesn’t exist, HDCP_ERROR_CLOSE_SESSION_FAILED shall be returned.

Parameters:
param_types (in): TEE_PARAM_TYPES(TEE_PARAM_TYPE_VALUE_INPUT,
 TEE_PARAM_TYPE_NONE,
 TEE_PARAM_TYPE_NONE,
 TEE_PARAM_TYPE_NONE);

params[0].value.a (in) HDCP_SESSION to close.

Threading:
This function may be called simultaneously with any other functions.

Returns:
HDCP_SUCCESS
HDCP_ERROR_BAD_PARAMETERS
HDCP_ERROR_CLOSE_SESSION_FAILED
HDCP Proprietary API

• Shall provide read and write function to HDCP registers

• When HDCP sessions are on going, shall block any write access changing HDCP version.
Widevine decrypt_cenc

Code to manage HDCP version is already there.

```c
required_hdcp = ((control->control_bits & controlhdcpversionmask) >> CONTROL_HDCP_VERSIONSHIFT);
if ( current_hdcp_capability() == 0 || required_hdcp > current_hdcp_capability() )
{
    return OEMCrypto_ERROR_INSUFFICIENT_HDCP;
}
....
```

But implementation of current_hdcp_capability() needs to be improved:

```c
bool local_display(void)
{
    return true;
}
static OEMCrypto_HDCP_Capability current_hdcp_capability(void)
{
    return local_display() ? HDCP_NO_DIGITAL_OUTPUT : HDCP_V1;
}
```

We need to connect current_hdcp_capability() to OEMHDCP_GetHDCPCapability() and no more use local_display() ? HDCP_NO_DIGITAL_OUTPUT : HDCP_V1;
PlayReady

Linux kernel configures HDCP:

- `ta_hdcp_set_running_mode`
 (set HDCP version)

OEMHDCP_SetHDCPRunningMode

open PlayReady session

- `TA_OpenSessionEntryPoint`

open HDCCP session

- `ta_hdcp_open_session`

- `OEM_TEE_AES128CTR_DecryptContentIntoHandle`

- `DRM_TEE_IMPL_DECRYPT_DecryptContentPolicyHelper`

- `OEM_TEE_AES128CTR_DecryptContentIntoHandle`

(to be repeated till end of the stream)

- `ta_hdcp_get_capability`
 (get current HDCP version)

- `OEM_HDCP_GetHDCPCapability`

close PlayReady session

- `TA_CloseSessionEntryPoint`

close HDCCP session

- `ta_hdcp_close_session`
- **HDCP version check is not yet implemented** and shall be added in all DRM_CALL DRM_TEE_AES128CTR_DecryptContent like functions, ideally before each call to Oem_Aes_CtrProcessDataIntoOutput().

- PlayReady use OPL (Output Protection Level)

Mapping proposal for OPL and HDCP versions:

<table>
<thead>
<tr>
<th>If current HDCP_Version between device and display is</th>
<th>OPL shall be in below range to allow PlayReady TA to decrypt video data</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDCP_NONE / Analog video</td>
<td>[0 - 200]</td>
</tr>
<tr>
<td>HDCP_V1_X</td>
<td>[201 - 250]</td>
</tr>
<tr>
<td>HDCP_V2_0</td>
<td>[201 - 250]</td>
</tr>
<tr>
<td>HDCP_V2_1</td>
<td>[201 - 250]</td>
</tr>
<tr>
<td>HDCP_V2_2 type 0</td>
<td>[201 - 250]</td>
</tr>
<tr>
<td>HDCP_V2_3 type 0</td>
<td>[201 - 250]</td>
</tr>
<tr>
<td>HDCP_V2_2 type 1</td>
<td>[251 - 300]</td>
</tr>
<tr>
<td>HDCP_V2_3 type 1</td>
<td>[251 - 300]</td>
</tr>
</tbody>
</table>
QUESTIONS