
SAN19-413:
TEE based Trusted

Keys in Linux
Sumit Garg

Overview
● Introduction to Kernel Keys
● Discuss Kernel Keys use-cases.
● How can we protect key confidentiality?
● Trusted and Encrypted Keys

○ Trusted Platform Module (TPM) as a trust source
● A system without a TPM device?

○ Trusted Execution Environment (TEE) as a trust source?
● New trust source: TEE device

○ Mechanism
○ Usage

Kernel Keys
● Kernel 'Key': A unit of cryptographic data, an authentication token, or some similar

element represented in the kernel by “struct key”.
● Kernel Key Retention Service: This service allows keys to be cached in the kernel

for the use of filesystems and other kernel services.
○ Keyrings: These are special keys that contain a list of other keys.

Our focus will be on cryptographic kernel keys used for services like disk encryption, file
encryption and protecting the integrity of file metadata.

Kernel Key Retention Service

Userspace

Kernel

keyctl

Trust
Source

Keyrings
(system, session, user..)

EVM

eCryptfs

(add, update, read, revoke..)

sy
sc

al
ls

seal/unseal

dm-crypt

network

kernel modules

R
eq

ue
st

 K
ey

Kernel Keys use-case: file system encryption
● File system encryption in kernel can be

implemented at following levels:
○ Layered FS on top of native FS like

eCryptfs.
○ In native FS, better performance

● Per-file encryption and key
management.

● Master key used to wrap file
encryption key.

● Trusted master key:
○ Protect against user-space

compromises.

Kernel Keys use-case: block layer encryption
● Encrypt everything on the disk – one

master key for whole disk (volume)
like dm-crypt.

● Trusted master key:
○ Protect against user-space

compromises.

Kernel Keys use-case: EVM
● EVM: Extended Verification Module
● EVM detects offline tampering of the security extended attributes, which are the

basis for:
○ Linux Security Module (LSM) permission decisions.
○ Integrity Measurement Architecture (IMA) appraisal decisions.

● Standard “security” extended attributes:
○ security.ima (IMA's stored “good” hash for the file)
○ security.selinux (the selinux label/context on the file)
○ security.SMACK64 (Smack's label on the file)
○ security.capability (Capability's label on executables)

● At boot time, EVM needs a high quality symmetric key for HMAC protection of file
metadata.

● Trusted EVM key:
○ Protect against user-space compromises.

Trusted and Encrypted Keys
● Introduced in Linux kernel since v2.6.38.
● Variable length symmetric keys.
● Accessible in plain form to kernel only.
● User-space only sees, stores and loads them as encrypted blobs.
● Added two new key types in the kernel:

○ Trusted Key type
○ Encrypted Key type

Trusted and Encrypted Keys
Trusted Key
● Relies on a hardware based trust

source like TPM.
● A random key generated using trust

source’s RNG.
● Trust source contains a secret key

used to seal/unseal this key to/from
encrypted blobs.

● Usage: mostly used as a master key
for encrypted keys.

Encrypted Key
● Doesn’t depend on trust source like

TPM, and are faster.
● A random key generated using kernel

random numbers pool.
● Master key is used for wrapping:

○ Trusted Key
○ User Key

● Usage: most of Trusted-encrypted
keys users request this key for actual
encryption/decryption.

Trusted Key: TPM as a trust source

 TPM device

Kernel

Userspace

RNG

Storage Root Key

Trusted TPM driver

Key
(unsealed plaintext)

Blob
(sealed:

TPM_STORED_DATA)

keyctl

(add, update, read, revoke..)

sy
sc

al
ls

Keyrings
(system, session, user..)

read/load

Seal/
unseal

Optional PCR info

PCRs

File-system access

Blob
(sealed:

TPM_STORED_DATA)

load/store

un
se

al

se
al

A system without a TPM device?
Most of the available embedded systems doesn’t possess a TPM device, likely reasons:
● Additional hardware, increases BoM cost.
● Constrained hardware resources.

An alternative could be a software based TPM but with following shortcomings:
● Big and complicated software stack.
● Constrained devices with limited flash space, may be difficult to fit along with boot

firmware.

TEE as an alternative to TPM?

TEE as a trust source?
● A Trusted Execution Environment based on ARM TrustZone provides hardware

based isolation to perform trusted operations.
● Especially OP-TEE which offers a standardized API to exploit hardware unique key

(HUK).
● HUK can be utilized to perform seal/unseal operations for Trusted keys.
● Sealed Trusted key blobs can be exported to user-space.
● Trusted key blobs can be unsealed on a particular hardware only.

REE

Trusted Keys: New TEE device

TEE

Ke
rn

el
U

se
rs

pa
ce

Hardware Unique
Key

Trusted TEE driver

Key
(unsealed plaintext)

Blob (sealed by TEE)

keyctl

(add, update, read, revoke..)

sy
sc

al
ls

Keyrings
(system, session, user..)

read/load

Early user TA as TEE
deviceFile-system access

Blob (sealed
by TEE)

load/store

SM
C

TEE Core
System

pseudo TA

N
ew

 k
ey

Se
al

 k
ey

U
ns

ea
l k

ey

G
et

 R
N

G

H
U

K
ac

ce
ss

A new TEE kernel client login method

● The TEE framework means that Trusted Applications are normally accessible to
both kernel and userspace.

● Need to restrict user-space client access to Trusted Keys early TA service. So
introduce a private REE kernel client login method:

○ TEE_IOCTL_LOGIN_REE_KERNEL

What if user-space client tries to
impersonate as kernel client?

TEE bus interface
Linux kernel provides a TEE bus interface to interact with TEE based services.

/**

 * struct tee_client_device_id - tee based device identifier

 * @uuid: For TEE based client devices we use the device uuid as

 * the identifier.

 */

struct tee_client_device_id {

 uuid_t uuid;

};

struct bus_type tee_bus_type = {
 .name = "tee",
 .match = tee_client_device_match,
 .uevent = tee_client_device_uevent,
};
EXPORT_SYMBOL_GPL(tee_bus_type);

Trusted keys usage
Create a new trusted key:
$ keyctl add trusted kmk "new 32" @u

$ keyctl show

$ keyctl print <key serial no>

Save and load trusted key:
$ keyctl pipe <key serial no> > kmk.blob

$ keyctl add trusted kmk "load `cat kmk.blob`" @u

Encrypted keys usage
Create an encrypted key using trusted key as master key.
$ keyctl add encrypted evm "new trusted:kmk 32" @u

$ keyctl show

$ keyctl print <key serial no>

Save and load encrypted key:
$ keyctl pipe <key serial no> > evm.blob

$ keyctl add encrypted evm "load `cat evm.blob`" @u

Next Steps
● Linux patch-set is already pushed in upstream, v2 is here.

○ Followup.
● OP-TEE reference pseudo TA for testing is here.

○ Need to convert this to an early TA using required support from system pTA.

https://lkml.org/lkml/2019/7/30/505
https://github.com/OP-TEE/optee_os/pull/3082

Thank you
Join Linaro to accelerate deployment of your
Arm-based solutions through collaboration

contactus@linaro.org

mailto:contactus@linaro.org

TEE based devices
Device enumeration takes place during specific TEE driver probe (OP-TEE driver in this
case). A particular TEE device is represented via following struct:

/**

 * struct tee_client_device - tee based device

 * @id: device identifier

 * @dev: device structure

 */

struct tee_client_device {

 struct tee_client_device_id id;

 struct device dev;

};

TEE device drivers
Drivers register on TEE bus with a table of devices they support. A particular TEE
device driver is represented via following struct:

/**

 * struct tee_client_driver - tee client driver

 * @id_table: device id table supported by this driver

 * @driver: driver structure

 */

struct tee_client_driver {

 const struct tee_client_device_id *id_table;

 struct device_driver driver;

};

