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Overview
● Introduction to Kernel Keys
● Discuss Kernel Keys use-cases.
● How can we protect key confidentiality?
● Trusted and Encrypted Keys

○ Trusted Platform Module (TPM) as a trust source
● A system without a TPM device?

○ Trusted Execution Environment (TEE) as a trust source?
● New trust source: TEE device

○ Mechanism
○ Usage



Kernel Keys
● Kernel 'Key': A unit of cryptographic data, an authentication token, or some similar 

element represented in the kernel by “struct key”.
● Kernel Key Retention Service: This service allows keys to be cached in the kernel 

for the use of filesystems and other kernel services.
○ Keyrings: These are special keys that contain a list of other keys.

Our focus will be on cryptographic kernel keys used for services like disk encryption, file 
encryption and protecting the integrity of file metadata.



Kernel Key Retention Service

Userspace

Kernel

keyctl

Trust 
Source

Keyrings
(system, session, user..)

EVM

eCryptfs

(add, update, read, revoke..)

sy
sc

al
ls

seal/unseal

dm-crypt

network

kernel modules

R
eq

ue
st

 K
ey



Kernel Keys use-case: file system encryption
● File system encryption in kernel can be 

implemented at following levels:
○ Layered FS on top of native FS like 

eCryptfs.
○ In native FS, better performance

● Per-file encryption and key 
management.

● Master key used to wrap file 
encryption key.

● Trusted master key:
○ Protect against user-space 

compromises.



Kernel Keys use-case: block layer encryption
● Encrypt everything on the disk – one 

master key for whole disk (volume) 
like dm-crypt.

● Trusted master key:
○ Protect against user-space 

compromises.



Kernel Keys use-case: EVM
● EVM: Extended Verification Module
● EVM detects offline tampering of the security extended attributes, which are the 

basis for:
○ Linux Security Module (LSM) permission decisions.
○ Integrity Measurement Architecture (IMA) appraisal decisions.

● Standard “security” extended attributes:
○ security.ima (IMA's stored “good” hash for the file)
○ security.selinux (the selinux label/context on the file)
○ security.SMACK64 (Smack's label on the file)
○ security.capability (Capability's label on executables)

● At boot time, EVM needs a high quality symmetric key for HMAC protection of file 
metadata.

● Trusted EVM key:
○ Protect against user-space compromises.



Trusted and Encrypted Keys
● Introduced in Linux kernel since v2.6.38.
● Variable length symmetric keys.
● Accessible in plain form to kernel only.
● User-space only sees, stores and loads them as encrypted blobs.
● Added two new key types in the kernel:

○ Trusted Key type
○ Encrypted Key type



Trusted and Encrypted Keys
Trusted Key
● Relies on a hardware based trust 

source like TPM.
● A random key generated using trust 

source’s RNG.
● Trust source contains a secret key 

used to seal/unseal this key to/from 
encrypted blobs.

● Usage: mostly used as a master key 
for encrypted keys.

Encrypted Key
● Doesn’t depend on trust source like 

TPM, and are faster.
● A random key generated using kernel 

random numbers pool.
● Master key is used for wrapping:

○ Trusted Key
○ User Key

● Usage: most of Trusted-encrypted 
keys users request this key for actual 
encryption/decryption.



Trusted Key: TPM as a trust source
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A system without a TPM device?
Most of the available embedded systems doesn’t possess a TPM device, likely reasons:
● Additional hardware, increases BoM cost.
● Constrained hardware resources.

An alternative could be a software based TPM but with following shortcomings:
● Big and complicated software stack.
● Constrained devices with limited flash space, may be difficult to fit along with boot 

firmware.

TEE as an alternative to TPM?



TEE as a trust source?
● A Trusted Execution Environment based on ARM TrustZone provides hardware 

based isolation to perform trusted operations.
● Especially OP-TEE which offers a standardized API to exploit hardware unique key 

(HUK).
● HUK can be utilized to perform seal/unseal operations for Trusted keys.
● Sealed Trusted key blobs can be exported to user-space.
● Trusted key blobs can be unsealed on a particular hardware only.
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A new TEE kernel client login method

● The TEE framework means that Trusted Applications are normally accessible to 
both kernel and userspace.

● Need to restrict user-space client access to Trusted Keys early TA service. So 
introduce a private REE kernel client login method:

○ TEE_IOCTL_LOGIN_REE_KERNEL

What if user-space client tries to 
impersonate as kernel client?



TEE bus interface
Linux kernel provides a TEE bus interface to interact with TEE based services.

/**

 * struct tee_client_device_id - tee based device identifier

 * @uuid: For TEE based client devices we use the device uuid as

 *        the identifier.

 */

struct tee_client_device_id {

        uuid_t uuid;

};

struct bus_type tee_bus_type = {
        .name           = "tee",
        .match          = tee_client_device_match,
        .uevent         = tee_client_device_uevent,
};
EXPORT_SYMBOL_GPL(tee_bus_type);



Trusted keys usage
Create a new trusted key:
$ keyctl add trusted kmk "new 32" @u

$ keyctl show

$ keyctl print <key serial no>

Save and load trusted key:
$ keyctl pipe <key serial no> > kmk.blob

$ keyctl add trusted kmk "load `cat kmk.blob`" @u



Encrypted keys usage
Create an encrypted key using trusted key as master key.
$ keyctl add encrypted evm "new trusted:kmk 32" @u

$ keyctl show

$ keyctl print <key serial no>

Save and load encrypted key:
$ keyctl pipe <key serial no> > evm.blob

$ keyctl add encrypted evm "load `cat evm.blob`" @u



Next Steps
● Linux patch-set is already pushed in upstream, v2 is here.

○ Followup.
● OP-TEE reference pseudo TA for testing is here.

○ Need to convert this to an early TA using required support from system pTA.

https://lkml.org/lkml/2019/7/30/505
https://github.com/OP-TEE/optee_os/pull/3082


Thank you
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TEE based devices
Device enumeration takes place during specific TEE driver probe (OP-TEE driver in this 
case). A particular TEE device is represented via following struct:

/**

 * struct tee_client_device - tee based device

 * @id:                 device identifier

 * @dev:                device structure

 */

struct tee_client_device {

        struct tee_client_device_id id;

        struct device dev;

};



TEE device drivers
Drivers register on TEE bus with a table of devices they support. A particular TEE 
device driver is represented via following struct:

/**

 * struct tee_client_driver - tee client driver

 * @id_table:           device id table supported by this driver

 * @driver:             driver structure

 */

struct tee_client_driver {

        const struct tee_client_device_id *id_table;

        struct device_driver driver;

};


