
Runtime Secure Keys in
OP-TEE
Sahil Malhotra
Arun Pathak

NXP Platform Security Team

Agenda
● OP-TEE Overview

● OP-TEE Crypto Layers Overview

● Crypto Operation

○ Key Generation & storage

○ Key Usage

● Security view in current implementation

● Well known security vulnerabilities

● Prevention – Hardware Backed Runtime Secure Keys

● NXP Proposal

OP-TEE Overview

Client Applications

TEE Client APITEE Supplicant

Linux OS

Trusted Applications

OP-TEE OS

Secure Monitor

TEE Driver

TA Interface TEE Internal API

Normal World Secure World

User

Kernel

OP-TEE Crypto Layers

TEE_*() libutee.a

tee_svc_*()

crypto_*()

LibTomCrypt/mbedTLS Library

User space

Kernel space

libtomcrypt/mbedTLS &

crypto.c

utee_*()

some_function() TA

Source: https://optee.readthedocs.io/architecture/crypto.html

https://optee.readthedocs.io/architecture/crypto.html

File System

Crypto Operation: Key Generation & Storage

OP-TEE OS

Key Generation

SW Crypto Library

Key

Persistent Key

Save key

Key Secured at Rest

File System

Crypto Operation: Key Usage

OP-TEE OS

Key Operation

SW Crypto Library

Key

Persistent Key

Open Key Object

Load key

Result

Data

Security view in current implementation
OP-TEE

File System

Key Generation

SW Crypto Library

Key

Persistent Key

Key Operation

Key

SW Crypto Library

Data

Result

Keys Secured at Rest

What about this

key in secure

memory??

Are they really

secure !! NO!!

Well Known Security Vulnerabilities
● OP-TEE: Integer Overflow in crypto system call - syscall_obj_generate_key

○ It takes the length of key to be generated, type, number of attributes(param_count) it
should have.

○ Allocates a buffer of size sizeof(TEE_Attribute) * param_count, without checking for the
integer overflow.

○ This can result in lesser heap buffer than required.
○ Then user supplied params is then copied into this buffer, that may result in heap based

buffer overflow with attacker data written outside buffer boundaries.
○ Such corruption might allow code execution in context of Secure EL1

● CVE-2018-14491 - Vulnerability in Third-Party Application
○ Qualcomm based device
○ Allows arbitrary execution of code in Secure EL0

Secure Memory

Normal World Secure World

Non Secure Memory Shared Memory

DataData

Happy

OP-TEE OS

Trusted Applications

Linux OS

Client Applications

Data

● Hardware Backed Runtime Secure Keys
○ Cryptographic operations are offloaded to Hardware Security Engine.
○ Hardware Security Engine gives and takes keys only in encrypted form.
○ Encryption of these keys are done with some hardware key.

Prevention – Hardware Backed Runtime Secure Keys

Prevention – Hardware Backed Runtime Secure Keys

OP-TEE

File System

Key Generation

HW Sec Library

Encrypted Key

Persistent Key

Key Operation

Encrypted Key

Load Key

HW Sec Library

Data

HW Sec Engine

Export to memory

HW Sec Engine

+ Data

Data

Enc Data

Keys Secured at Rest
Keys Secured at Use

i.e. Runtime Secure Keys

Secure Memory

Normal World Secure World

Non Secure Memory Shared Memory

DataData

Linux OS

Client Applications

OP-TEE OS

Trusted Applications

I stole

the key!

No Use.

Data

NXP Proposal
● Encrypted Key that we just discussed is NXP CAAM Black key mechanism.
● Using the Hardware Security Engines we can protect the confidentiality and

integrity of the keys while we are using them, i.e. Making them secure at runtime
also.

● So we are proposing a generic framework in OP-TEE for seamless implementation
of Hardware Backed Runtime Secure Keys, so that other vendors can also
implement this feature on their SoCs.

● Already did PoC for implementing the Hardware Backed Runtime Secure Keys for
RSA & ECDSA on top of NXP CAAM driver which is in process of upstreaming in
OP-TEE.

● For Technical discussion raised an issue on OP-TEE github portal
● https://github.com/OP-TEE/optee_os/issues/3287

https://github.com/OP-TEE/optee_os/issues/3287

Thank you
Join Linaro to accelerate deployment of your Arm-
based solutions through collaboration

contactus@linaro.org

mailto:contactus@linaro.org

References
● https://blog.quarkslab.com/attacking-the-arms-trustzone.html
● https://www.op-tee.org/security-advisories/
● https://s3.amazonaws.com/connect.linaro.org/bkk19/presentations/bkk19-419.pdf
● https://migrationobservatory.ox.ac.uk/resources/reports/thinking-behind-the-

numbers-understanding-public-opinion-on-immigration-in-britain/blue-binary-
code/

https://blog.quarkslab.com/attacking-the-arms-trustzone.html
https://www.op-tee.org/security-advisories/
https://s3.amazonaws.com/connect.linaro.org/bkk19/presentations/bkk19-419.pdf
https://migrationobservatory.ox.ac.uk/resources/reports/thinking-behind-the-numbers-understanding-public-opinion-on-immigration-in-britain/blue-binary-code/

