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OP-TEE Crypto Layers
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Source: https://optee.readthedocs.io/architecture/crypto.html

https://optee.readthedocs.io/architecture/crypto.html
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File System
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Security view in current implementation
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Well Known Security Vulnerabilities
● OP-TEE: Integer Overflow in crypto system call - syscall_obj_generate_key

○ It takes the length of key to be generated, type, number of attributes(param_count) it 
should have.

○ Allocates a buffer of size sizeof(TEE_Attribute) * param_count, without checking for the 
integer overflow.

○ This can result in lesser heap buffer than required.
○ Then user supplied params is then copied into this buffer, that may result in heap based 

buffer overflow with attacker data written outside buffer boundaries.
○ Such corruption might allow code execution in context of Secure EL1

● CVE-2018-14491 - Vulnerability in Third-Party Application
○ Qualcomm based device
○ Allows arbitrary execution of code in Secure EL0
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● Hardware Backed Runtime Secure Keys
○ Cryptographic operations are offloaded to Hardware Security Engine.
○ Hardware Security Engine gives and takes keys only in encrypted form.
○ Encryption of these keys are done with some hardware key.

Prevention – Hardware Backed Runtime Secure Keys



Prevention – Hardware Backed Runtime Secure Keys
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NXP Proposal
● Encrypted Key that we just discussed is NXP CAAM Black key mechanism.
● Using the Hardware Security Engines we can protect the confidentiality and 

integrity of the keys while we are using them, i.e. Making them secure at runtime 
also.

● So we are proposing a generic framework in OP-TEE for seamless implementation 
of Hardware Backed Runtime Secure Keys, so that other vendors can also 
implement this feature on their SoCs.

● Already did PoC for implementing the Hardware Backed Runtime Secure Keys for 
RSA & ECDSA on top of NXP CAAM driver which is in process of upstreaming in 
OP-TEE.

● For Technical discussion raised an issue on OP-TEE github portal
● https://github.com/OP-TEE/optee_os/issues/3287

https://github.com/OP-TEE/optee_os/issues/3287
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