Ongoing research in Bristol: New Drugs ‘In Silico’

- Parkinson’s & Osteoporosis
Multiphysics Simulations: Fluid Dynamics, Heat Diffusion, Electromagnetics

Gas turbine: suck, squeeze, bang, blow
What is “Super” or “High Performance” Computing?

Lake Tahoe ~40 Trillion Gallons of water (4.0x10^12)
~2002 Supercomputers hit 40 Teraflops (Earth Simulator – Japan/NEC)
What is “Super” or “High Performance” Computing?

The Great Lakes hold ~6.5 Quadrillion gallons of water (6.5×10^{15})
2008 Supercomputers hit 1 Petaflop (1.0×10^{15}) (US IBM Roadrunner)
Top500 systems over the past 25 years
These are not embedded devices:
Early Research into the Efficacy of Arm for HPC
Catalyst UK: Accelerating ARM Adoption in UK

Program Goals

- **Deployment**: Deployment of HPC clusters at multiple UK sites, supported for 3-year period providing access to academia & industry
- **Adoption**: Early adoption of ARM for HPC in UK; Apollo 70 Early Ship followed by customer collab.
- **Applications**: Customer-driven porting and opt
- **Collaboration**: Leveraging the success "Project Comanche" model of customer-centric collaboration, but based instead on Early Ship HPE Apollo 70 product
- **Exascale**: Establish foundation for Exascale collab

Industry Partners

- **HPE**: Apollo 70, HPE Performance Software - Cluster Manager, HPE Performance Software – Message Passing Interface
- **ARM**: Adata Studio (Compiler, Libraries, Forge-DDT & MAP), OpenHPC
- **Mellanox**: OFED, HPC-X, OpenMPI, OpenSHMEM, MXM, SHARP
- **SuSE**: SLEs, OpenStack, HPC Module
- **Cavium**: ThunderX2 SoC, technical support
- **Qualcomm**: Centriq SoC, technical support (tentative)

UK Collaborations

- **EPCC**: WRF, OpenFOAM, Rolls Royce Hydra opt, 2 PhD candidates
- **Leicester**: Data-intensive apps, genomics, MOAB Torque, DIRAC collab.
- **Bristol**: VASP, CASTER, Gromacs, CP2K, Unified Model, Hydra, NAMD, Oasis, NEMO, OpenIFS, CASINO, LAMMPS
- **UK Government**: Dept. for Bus., Energy & Industrial Strategy (BEIS)

Configs & Timeline

Typical for each site:

- 64 Apollo 70
 - Compute Nodes: 2 Cavium 32c, 2.2 GHz
 - 256GB memory (16GB DIMM)
 - 8 EDR CX5 Cloos
 - 4096+ cores
 - 6 CL4300 (tentative)
 - Services/Storage
 - Qualcomm Centriq

Sep-Dec: Structure partnership, alignment

Jan: HPE/ARM SOW

Feb: Customer SoWs, quotations, POs

Mar: SW stack validation (3rd Party Runtime library)

Apr: Systems build, public announcements

May: Delivery and acceptance

Measures of Success

Intended outcomes include:

- Critical HPC apps ported and demonstrated
- ISV engagements and demonstrations
- Demonstrated performance improvements
- Publications and follow-on collaborations
- Bugs filed, fixed & up-streamed to open source

HPE will deliver >12,000 cores across 3 sites, amongst the largest ARM HPC deployments in the world

HPE Confidential
Isambard The World’s First Arm-based Production Supercomputer
Vanguard Astra by HPE: #156 on top500

- 2,592 HPE Apollo 70 compute nodes
 - 5,184 CPUs, 145,152 cores, 2.3 PFLOPs (peak)
- Marvell ThunderX2 ARM SoC, 28 core, 2.0 GHz
- Memory per node: 128 GB (16 x 8 GB DR DIMMs)
 - Aggregate capacity: 332 TB, 885 TB/s (peak)
- Mellanox IB EDR, ConnectX-5
 - 112 36-port edges, 3 648-port spine switches
- Red Hat RHEL for Arm
- HPE Apollo 4520 All-flash Lustre storage
 - Storage Capacity: 403 TB (usable)
 - Storage Bandwidth: 244 GB/s
Exascale – the race underway at the high end

Projected Exascale System Dates

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td>PEAK ES: 2023-2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-ES: 2020-2022 (~$125M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vendors: US and then European</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Processors: x86, ARM & RISC-V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Initiatives: EuroHPC, EPI, ETP4HPC, JU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cost: Over $300M per system, plus heavy R&D investments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Sustained ES*: 2021-2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peak ES: 2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vendors: Chinese (multiple sites)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Processors: Chinese (plus U.S.?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13th 5-Year Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cost: $350-$500M per system, plus heavy R&D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>Sustained ES*: ~2021/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peak ES: Likely as a AI/ML/DL system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vendors: Japanese</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Processors: Japanese ARM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cost: ~$1B, this includes both 1 system and the R&D costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>They will also do many smaller size systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 exaflops on a 64-bit real application

© Hyperion Research
1. High-Performance Arm CPU A64FX in HPC and AI Areas

Architecture features

- **ISA**: Armv8.2-A (AArch64 only) SVE (Scalable Vector Extension)
- **SIMD width**: 512-bit
- **Precision**: FP64/32/16, INT64/32/16/8
- **Cores**: 48 computing cores + 4 assistant cores (4 CMGs)
- **Memory**: HBM2: Peak B/W 1,024 GB/s
- **Interconnect**: TofuD: 2B Gbps x 2 lanes x 10 ports

Peak performance (Chip level)

![Graph showing peak performance](image)

- **A64FX (Fugaku)**: 21.6+ TOPS
- **SPARC64 VIIIfx (K computer)**: 10.8+ TOPS

© 2019 Arm Limited
Exascale – European Processor Initiative

- EPAC - EPI Accelerator (TITAN)
- MPPA - Multi-Purpose Processing Array
- eFPGA - embedded FPGA
- Cryptographic ASIC (EU Sovereignty)
Arm HPC Software Ecosystem

Job schedulers and Resource Management:
- SLURM, IBM LSF, Altair PBS Pro, etc.

HPC Applications:
- Open-source, Owned, and Commercial ISV codes

App/ISA specific optimizations, optimized libs and intrinsics:
- Arm PL, BLAS, FFTW, etc.

Parallelism standards:
- OpenMP (omp / gomp), MPI, SHMEM (see below)

Programming Languages:
- Fortran, C, C++
 - via GNU, LLVM, Arm CLA

Debug and performance analysis tools:
- Arm Forge, Rogue

Filesystems:
- BeeGFS, LUSTRE, ZFS, HDFS, GPFS

Communication Stacks and run-times:
- Mellanox IB/OFED/HPC-X, OpenMPI, MPICH, MVAPICH2, OpenSHMEM, OpenUCX, HPE MPI

Linux OS Distro of choice:
- RHEL, SUSE, CENTOS, ...

Arm Server Ready Platform:
- Standard OS compatible FW and RAS features

User-space utilities, scripting, containers, and other packages:
- Singularity, Openstack, OpenHPC, Python, NumPy, SciPy, etc.
Porting HPC apps to the Arm platforms

- GROMACS
- LAMMPS
- CESM2
- MrBayes
- Bowtie
- NAMD
- AMBER
- Paraview
- SIESTA
- UM
- WRF
- Quantum ESPRESSO
- VASP
- MILC
- GEANT4
- OpenFOAM
- GAMESS
- VisIIT
- DL-Poly
- NEMO
- BLAST
- NWCHEM
- Abinit
- BWA
- QMCPACK

Build recipes online at https://gitlab.com/arm-hpc/packages/wikis/home
Arm in IoT

We design & license IP, we do not manufacture chips
Partners build products for their target markets
One size does not fit for all
HPC is a great fit for co-design and collaboration

21 billion chips in the past year
Mobile/Embedded/IoT/Automotive/GPUs
And now ... servers

Arm Technology Connects the World
The New Architecture
HPC is an Architecture

• Historically strong focus on high-end systems and balance:
 • B:F Ratio’s of the late 1990’s thru 2010
 • Parallel processing at massive scale
 • Low-latency / high BW interconnects
 • Citing: S/W maintenance, roll-out, cooling/power

• Workloads:
 • Historical workloads scientific simulation
 • Recent new workloads attracted to “high-end” capabilities of HPC architectures: big data, Deep Learning/AI
 • HPC Leads in technology acceptance (think Formula-1)
 • HPC is an excellent partner for the ecosystem
Arm is Data driven, from the edge to the core
The Cloud to Edge Infrastructure Foundation for a World of 1T Intelligent Devices

Thank You

Arm.com/hpc
Arm’s business model (HPC focus)

Arm IP
Armv8.x and extensions, Neoverse IP roadmap SVE Scalable Vector Extension

Si Partners
Marvell, Cavium, Fujitsu, Ampere, A64FX

Platforms
Hewlett Packard Enterprise, Atos Bull, Sandia National Laboratories, University of Bristol

Deployment
Cray, The Supercomputer Company, CEA, EPCC

Software ecosystem
The Future of Arm in HPC

- Scalable Vector Extension Set (SVE)
- Hewlett Packard Enterprise
- TOP 500
- Scalable Vector Extensions
- Arm HPC
- Scalable Vector Extension Set (SVE)