Usmg Python Over 1y
to Experiment with ¢f
Neural Networks =

SAN19-313 ' connect

San Diego 2019

Tom Curran, Avnet

Self Introduction

e Avnet— 12 years ’
e Global Products & Emerging Technologiesl\ V N E I

Technical training courses
o Reference designs
Petalinux BSPs

o Dev board development

Embedded Linux & software development for Zynqg, Zyng MPSoC, and
MicroBlaze

o

@]

O

Linaro
connect
San Diego 2019

Accelerating a Processor

Processor

Co-Processor

IIIII

Zyng MPSoC System-on-Chip PS & PL

inyied Memory
Interfaces

Common &

Common Custom
Peripheral ARM® Peripheral
Controllers — Quad Cortex-A53 & Controllers
Dual Cortex-R5
System
Custom Co-Processors UltraScale+
Programmable

Logic (PL) |
coffect

What is PYNQ?

e Open-source project from Xilinx
e Makes it easy to design
embedded systems with Zyng
e Python language and libraries
o Exploits both PS & PL
e Create high performance
embedded applications
Parallel hardware execution
High frame-rate video processing
Hardware accelerated algorithms
Real-time signal processing
High bandwidth 10
Low latency control

© O O O O O

http://avnet.me/pynqg Info

(2]
=
5]
2
[}
2
a
=)
<

Hardware

PYNQ

Jupyter /
IPython

PYNQ notebooks

\ [matplotlib] (NumPy] (scikit—learn] -——-)

~

(Python
PYNQ libraries] (dma)

\-[PL. M GPIO M Interrupt H{ MMIO)—(Iibcma.so]/

Linux Kernel

sysgpio)—[uio)—(devmem)—(xInk y

~

{ aX| intc |

FPGA
(PL)

\
0

'f_

— Apps

— APIs

— Drivers

| Bitstreams

http://avnet.me/pynq_info

Whatis an Overlay?

e Python wrapper around an underlying PL Hardware Design

e Access hardware co-processors and peripherals as function calls

e Analogous to highly-accelerated and customized software libraries
e Image processing example using PL for hardware acceleration

o SW programmer uses a library to run image processing functions on the
CO-Processors

= edge detect, thresholding, etc

o Hardware co-processors are loaded to the PL dynamically, as required, just
ike a software library

o Using Pynq, separate image processing functions could be implemented in
different overlays and loaded from Python on demand.

https://github.com/Xilinx/PYNQ-ComputerVision connect
5 —

https://github.com/Xilinx/PYNQ-ComputerVision

Image Processing Example

X11 USB HDMI HDMI
in out

Block 2
cvBlockn

—
x
O
i,
o0
=
o

— cV
"l cvBlock3

Linaro
‘@ connect
San Diego 2019

Set up for PYNQ

e Download PYNQ image and write to
microSD card
o Ultra96: http://avnet. me/ultra96-pyng
e Connect all the hardware
o Ultra96-V1 or Ultra96-V?2
o 4A Power Supply

o Internet
s Wired USB-to-Ethernet
s WiFi
s USB Gadget Ethernet also available

o Terminal through Click Mezzanine
USB-UART in mikroBUS #2

= Not required

Linaro
connect
San Diego 2019

http://avnet.me/ultra96-pynq

Getting Started with PYNQ

http://avnet.me/ultra96-pynqg-setup
e Boot the board

e Open browser to IP Address of the board (turn off any VPN)
o Wi-FI: 192.168.2.1
o USB Gadget: 192.168.3.1

o USB-to-Ethernet: Depends on what router assigned.
m |f Terminal connected, use i fconfig command to determine IP address

......

http://avnet.me/ultra96-pynq-setup

Experiment with Getting Started

= O >
" Home x +

& - C {t @ Notsecure | 192.168.11.33:9090/tree?

* oo @A O
— Jupyter

Logout

Files Running Clusters MNbextensions

Select items to perform actions on them. Upload | Mew~ || &

0|~ Im Mame Last Modified
O 3 common (0 -] getting_started 7 months ago
L) O getting_started (i

12 hours ago

) [sensors96b (3 images T months ago

& Welcome to Pynq.ipynb _jupyter_notebooks.ipynb 7 months ago

(W
|_]
O &2 _python_environment.ipynb
O

& 3 jupyter_notebooks_advanced_features ipynb

Linaro
‘ ‘ " connect
San Diego 2019

Available Overlays

e Most are on the Xilinx GitHub
https://github.com/Xilinx
o Sort by Language: Jupyter Notebook
e Support for Ultra96:

o Quantized Neural Networks
https ://github.com/Xilinx/QNN-MO-PYNQ

o OpenC\/ vision pipelines
https://github.com/Xilinx/PYNQ-ComputerVision

o Extended Kalman Filter on GPS data
https://github.com/sfox14/pynq-ekf

o PYNQ Helloworld image resizer
https://github.com/Xilinx/PYNQ-HelloWorld

......

https://github.com/Xilinx
https://github.com/Xilinx/QNN-MO-PYNQ
https://github.com/Xilinx/BNN-PYNQ
https://github.com/Xilinx/PYNQ-ComputerVision
https://github.com/sfox14/pynq-ekf
https://github.com/Xilinx/PYNQ-HelloWorld

What Are Neural Networks?

e Modeled after nerve
cells in the brain,
called neurons

e Neuron consists of:

information enters
nerve cell at the

\ synaptic site on

\ the dendrite

synapse |

Hillock

nucleus

axon terminal

o Inputs and input '
weights (synapses . | |
and dendrites) —p dendrite axon

| propagated action potentials
| = lecave the soma-dendnte
complex to travel to

the axon terminals

o Summation and
Activation (cell
body)

o Output (hillock --
firing across a
membrane through
the axon)

*Credit: Sacha Barber, Neural Network for beginners,
https://www.codeproject.com/Articles/16419/Al-Neural-Network-for-beqginners-Part-of
ey

axon branches

\ output

ﬁ

Linaro
‘ (e)) connect
San Diego 2019

https://www.codeproject.com/Articles/16419/AI-Neural-Network-for-beginners-Part-of

What Are Artificial Neural Networks?

<l oW
“ Activation function
(more on this later)
wl
» ‘ -
3
Inputs — Output

I

I

I

I

I
- Perceptron (rosenblat, 1962)

Linaro
connect
San Diego 2019

Install Neural Networks Notebook Into PYNQ

o Binarized Neural Network (BNN)
o sudo pip3 install git+https://github.com/Xilinx/BNN-PYNQ.git

= [3 bnn

=[O common

[O getting_started
=[O qnn

& [3O sensors96b

L & Welcome to Pyng.ipynb

— Jupyter

BNN Road Signs Example

Files Running Clusters Mbextensions
e Binary Neural Network on Pyng Select tems to perform actions on them
e Image recognition with a D0 - |®/bmn
binarized neural network inspired o
by the VGG-16 model 0 pictres

o © convolutional layers = & CNV-BNN_Cifar10 ipynb

o 3 max pool layers
o 3 fully connected layers

[J & CNV-BNN_Road-Signs.ipynb
O & CNV-BNN_SVHN.ipynb

O & CNV-QNN_Cifar10.ipynb

https://neurohive.io/en/popular- O & CNV-QNN_Cifar0_Testsetipynb
networks/qu 16/ O & CNV-QNN_Cifar10_Webcam.ipynb
L & LFC-BNN_Chars_Webcam.ipynb
Recorded Example (Sahaj Sarup): © & LFC-BNN_MNIST_Webcam ipynb
https://youtu.be/ptzrg9dP13w O 8 LFC-QNN_MNISTipynd L
) [3 sds_trace_data.dat @?Elafigﬂ

https://neurohive.io/en/popular-networks/vgg16/
https://youtu.be/ptzrg9dPI3w

Instantiate a Classifier

1. Instantiate a Classifier

Creating a classifier will automatically download the correct bitstream onto the device and load the weights trained on the specified dataset. By default there are
three sets of weights available for the BNN version of the CNV network using 1 bit weights and 1 activation (W1A1) - this example uses the German Road Sign

dataset. EXpIan at|0n

import bnn
print(bnn.available params(bnn.NETWORK CNVW1A1))

classifier = bnn.CnvClassifier(bnn.NETWORK CNVW1Al, ‘road-signs’, bnn.RUNTIME_ HW)

['cifarld’, 'road-signs', 'streetview’]

Operation

‘ @ égﬁﬁect

San Diego 2019

List the Available Classes

2. List the available classes

The selected dataset can classify images in 42 classes, the names of which are accessible through the classifier.

print(classifier.classes)

["28 Km/h', '38 Km/h", '5@ Km/h', '&@& Em/h', '78 KEm/h', '828 Km/h', "End 88 Km/h', "18@ Km/h', '128 Km/h', "No overtaking', "No
overtaking for large trucks', 'Priority crossroad’, 'Priority road’, "Give way', 'Stop’, 'Mo wvehicles', 'Prohibited for vehicle
s with a permitted gross weight over 3.5t including their trailers, and for tractors except passenger cars and buses’, 'No entr
y for vehicular traffic’', 'Danger Ahead', 'Bend to left', 'Bend to right', 'Double bend (first to left)’, "Uneven road', 'Road
slippery when wet or dirty', 'Read narrows (right)’, 'Road works', 'Traffic signals®, 'Pedestrians in road shead', 'Children cr
ossing ahead', 'Bicycles prohibited', 'Risk of snow or ice', 'Wild animals', 'End of all speed and overtaking restrictions’, 'T
urn right ahead', 'Turn left ahead', "&head only', '"Ahead or right only', 'Ahead or left only', "Pass by on right', "Pass by on
left’, '"Roundabout', 'End of no-overtaking zone', '"End of no-overtaking zone for vehicles with a permitted gross weight over 3.
5t including their trailers, and for tractors except passenger cars and buses', "Not a roadsign']

Linaro
‘ @ connect
San Diego 2019

Open Images To Be Classified

3. Open images to be classified

The images that we want to classify are loaded and shown to the user

from PIL import Image

import numpy as np

from os import listdir

from os.path import isfile, join
from IPython.display import display

imglist = [f for £ in listdir("/home/xilinx/jupyter_notebooks/bnn/pictures/road_signs/") if isfile(join("/home/xilinx/jupyter_not

images = []

for imgFile in imglist:
aimg = Image.open(”/home/xilinx/jupyter notebooks/bnn/pictures/road signs/" + imgFile)
+images.append(img)
aimg.thumbnail((64, 64), Image.ANTIALIAS)
adisplay(img)

T
‘ @ clgf{ﬁect

San Diego 2019

Launch BNN on Co-processor (PL)

4. Launching BNN in hardware

The images are passed in the PL and the inference is performed. The images will be automatically formatted to the required format that is processed by CNY
network (Cifar-10 format).

results = classifier.classify images(images)
print(“"Identified classes: {@}".format(results))
for index in results:
print({"Identified class name: {@}".format((classifier.class _name(index))))

Inference took 915.@8 microseconds, 385.88 usec per image
Classification rate: 3273.69 images per second

Identified classes: [14 27 41]

Identified class name: Stop

Identified class name: Pedestrians in road ahesad
Identified class name: End of no-overtaking zone

T
‘ @ c'c';f'{ﬁect

San Diego 2019

Launch Same Thing in Software (PS)

5. Launching BNN in software

The inference on the same image is performed in sofware on the ARM core by passing the RUNTIME_SW attribute to the Image-Classifier

sw_class = bnn.CnvClassifier({bnn.METWORK CHNVW1Al,"rcad-signs", bnn.RUNTIME_SW)

results = sw_class.classify images(images)
print({"Identified classes: {@}".format(results))
for index in results:
print({"Identified class name: {8}".format((classifier.class_name(index)})))

Inference took 16%91285.86 microseconds, 563761.6% usec per image
Classification rate: 1.77 images per second

Identified classes: [14 27 41]

Identified class name: Stop

Identified class name: Pedestrians in road ahead

Identified class name: End of no-overtaking zone

e Processed atrate of 1.// images per second

e Co-processoris 18b0x faster (@) Rt

San Diego 2019

N\

STOP):

4

How Can You Get Started?
e PYNQ Experience not required

e Xilinx design experience not required
e You need hardware and an internet connection

e [earn more about PYNQ at http://avnet.me/pyng_info

Get the Ultra96 image at http://avnet.me/ultra96-pyng
o Also contains information about overlays

Watch the Getting Started Video on YouTube
http://avnet.me/ultra96-pyng-setup

Watch the BNN Example Video on YouTube
https://youtu.be/ptzrg9dPI3w

e Run a Neural Network PYNQ example yourself

Linaro
connect
San Di

...... 19

http://avnet.me/pynq_info
http://avnet.me/ultra96-pynq
http://avnet.me/ultra96-pynq-setup
https://youtu.be/ptzrg9dPI3w

Deeper Dive Learning

e Avnet Technical Training Courses On Demand for Ultra96

o http://avnet.me/TTC on Demand

o Software Development (Bare Metal), Hardware Development, PetaLinux, SDSoC,
Artificial Intelligence, and PYNQ (2-day course)

Free eBook: Exploring Zynq MPSoC with PYNQ and Machine learning
applications

The book introduces Zyng MP SoC (Multi-Processor System-on-Chip) from Xilinx that combines an Arm Cortex-A53 Ma:hlmTl;:t:rgﬂmlmﬂnns y
based processing systems, Arm Cortex-R5 real-time processars, and FPGA programmable logic. : o~ -
Topics include Zyng MP5oC architecture, design tools, hardware/software co-design, and software-defined m
methodologies. It features sepcial sections on PYNQ (Python-based framewaork for Zyng) and machine learning. : "&
- — — —
Download free from www.zyng-mpsoc-book.com or get a hard-copy on Amazon and other booksellers. £ KILNK, B
Linaro
connect

San Diego 2019

http://avnet.me/TTC_on_Demand
http://www.zynq-mpsoc-book.com/

L=

Thank you

Join Linaro to accelerate deployment of your Arm-
based solutions through collaboration

Linaro
connect

San Diego 2019

mailto:contactus@linaro.org

