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Deep Learning is Pervasive
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Amazon Lex
Build chatbots to engage
customers

Amazon Transcribe
Automatic speech recognition

Amazon Polly
Natural sounding text to speech
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Amazon Rekognition
Deep learning-based image
and video analysis
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TRANSLATION
Amazon Translate
Fluent translation of text

Amazon Comprehend
Discover insights and

relationships in text aws
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ARM - Unique Role in AWS Ecosystem
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A1 EC2 Instance Alexa Devices 31 party Edge Devices
Optimized cost and performance Build natural voice experiences Portable Deep Learning
for scale-out workloads
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How to Accelerate Deep Learning?

Apache MXNet
TensorFlow

PyTorch

XGBoost
Train and tune the model

Build a ML model with the using Amazon SageMakes

framework of your choice

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

" 0

Amazon
Choose target SageMaker Neo
hardware platform SageMaker Neo will optimize

the trained model for the
target hardware platform

N

You can then deploy your
models on the cloud
or at the edge
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Agenda

Overview of Neo

Relay Graph Optimizations
TVM Tensor IR Optimizations
Evaluation
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Deep Learning Inference
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Deep Learning Compiler
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Models and hardware targets are far away!
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TVM: end-to-end optimization stack
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TVM Overview

Framework Graph

Optimized Binary

.,
TF Mxnet | .... parsers
N\ v
Relay Graph
y
Target-independent Relay passes
¥
Target-dependent Relay passes
'
Target-optimized graph
4
Intel ARM Nvidia ARM .. More
x86 CPU GPU GPU | targets
Schedule templates written in TVM Tensor IR
]
AutoTVM — Tuning the kernels
¥
Codegen — LLVM, Cuda, C, ...
!

Framework Parsers

Graph level optimizations

Tensor-level optimizations

Machine code generation
adWs



Agenda

Overview of TVM

Relay Graph Optimizations
TVM Tensor IR Optimizations
Evaluation
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Computation Graph Optimization

Represent high-level
deep learning computations

I Target Independent

flatten

« Graph partitioning

@ conv2d | |channels=32, « Constant prOpagatiOn
v e i « Dead code elimination
re,'“ HseTbiasso « Operation fusion
@ conv2d | rmmTmmmmmoomomooooe
*I operation Target Dependent
reliu

v > inputs  Data layout transform

v dataflow L
dense dependency ! * Legalization
v )
softmax

shape=(1,10)
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Operation Fusion Example
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Target Dependent Layout Transformation
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Observation - Data layout NCHWc
leads to better memory accesses

ATC’19 Optimizing CNN Model Inference on CPUs
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Agenda

Overview of TVM
Relay Graph Optimizations

TVM Tensor IR Optimizations
Evaluation
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TVM Tensor IR

» Compute definition

C = tvm.compute((m, n),
lambda i, j: tvm.sum(A[i, k] *x B[k, jl, axis=k))

* TVM Schedule - Developer-friendly loop transformations

* Do not need hardware ISA knowledge to perform loop optimizations

= tvm.create_schedule(C.op)
X0, yo, xi, yi = s[C].tile(C.op.axis[@], C.op.axis[1], bn, bn)
ko, ki = s[C].split(k, factor=4)
s[C].reorder(ko, xi, ki, yi)
s[Cl.unroll(ki)
s[Cl.vectorize(yi)
s[C].parallel(xo)

VVVVVVYVYW

adws

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.



Large Search Space for Schedule

Compute Description
- — o _—_————— = - B
O‘i‘@ﬂ = tvm.compute((m, n),

L lambda y, x: tvm.sum(A[k, y] * B[k, xI], axis=k))I

Large search Loop Thiead  Bosore Loali
Space fOr Transformations Bindings ache Locallty
O pt| m izati on Thread . Latency
Ch o) | ces Cooperation [Eraiesie] Hiding
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AutoTVM - Learning-based Program Optimizer
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Templated Schedule Code generator Program

Learning

D ]

Training data

» Relatively low experiment cost
« Domain-specific problem structure
» Large quantity of similar tasks

NeurlPS’19 Learning to Optimize Tensor Programs aws
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Agenda

Overview of TVM

Relay Graph Optimizations
TVM Tensor IR Optimizations
Evaluation
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Experiment Setup

e Server - EC2 A1 Instance
= 16-core ARMvS8

« Edge device - Acer aiSage
= Rockchip RK3399 SoC + ARM Mali GPU T-860

adws
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TVM - Evaluation on ARM A1 Server

Speedup of TVM execution normalized to Tensorflow-Eigen
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TVM - Evaluation on Edge Device Acer aiSage

B TVM B ACL

1.25

Speedup
o
N
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Baseline: ACL
Batch size = 1

Benchmarks

ICPP’19 A Unified Optimization Approach for CNN Model Inference on Integrated GPUs awg
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Effects of Tuning Convolution operators in TVM

Batch size = 1 Acer aiSage
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ResNet50 MobileNet SqueezeNet
Benchmark
ICPP’19 A Unified Optimization Approach for CNN Model Inference on Integrated GPUs aws
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Takeaways

© 2019, Amazon
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Deep learning compilation is essential for portability and performance
across a variety of targets.

Optimizations are important at all levels — graph- and tensor-level.

Abstracting compute and HW-dependent schedule enables developers to
write kernels without extensive knowledge of HW ISA.

Open-source collaborations are the key to achieve the dream of running
deep learning everywhere.
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Linaro Community

 TVM enjoys LLVM ARM codegen support

« Better support for Int8 instructions
» Better support for different ARM variants

» Better schedules
« Data layout optimizations are hardware dependent
 TVM performance of ARM GPUs can be improved

* ACL support for TVM

adws
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Thank you! |
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Amazon
SageMaker Neo
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https://github.com/dmlc/tvm
https://github.com/neo-ai/

