
Upstreaming ARM64 
SoC's easier than 
before

Manivannan Sadhasivam
Kernel Engineer, Linaro-96Boards



Contents
● Overview
● Who am I?
● Conventional question - Why upstreaming?
● ARM vs ARM64 in Linux kernel (Simplistic)
● ARM64 SoC Pull Request Tips
● ARM64 SoC Upstreaming Checklist

○ Basic SoC and board support
○ Add core SoC infrastructure
○ Bring up Non Volatile memory
○ Bring up Networking
○ Bring up Display and Audio
○ Add Nice-to-have features



Overview
● What are we going to discuss?

○ How should upstream ARM64 SoC’s in Linux kernel
● What is not applicable?

○ This talk is not about how to do generic kernel upstreaming
○ For this, please refer: Upstreaming 101 track

● Target audience
○ SoC/Board vendors
○ Developers familiar with kernel upstreaming process

● Outcome
○ Know how to do ARM64 SoC upstreaming seamlessly!



Who am I?
● Manivannan Sadhasivam - manivannan.sadhasivam@linaro.org

○ Kernel Engineer at Linaro-96Boards
■ Taking care of the SW ecosystem of 96Boards
■ Frequently answer the question, “What is 96Boards?”
■ Encouraging vendors to participate in Open Source activities
■ Helping the community!

○ Open Source contributor - OpenHub
■ Contributing to Linux Kernel

● Maintaining Bitmain, RDA Micro SoCs
● Co-Maintaining Actions Semi SoCs
● Random contributions all over the kernel

■ Contributing to U-Boot
● Maintaining Actions Semi SoCs
● Co-Maintaining HiSilicon SoCs
● Maintaining few Dev boards (Mostly 96Boards)

■ Contributions to Zephyr
● Maintaining few SoCs, boards, drivers
● Maintaining LED subsystem
● Proposed LoRa support (under review)



Conventional question - Why SoC upstreaming?
● Why a vendor should upstream?

○ Maintaining downstream SoC port is hard
○ Show up your SoC in official kernel released by Linus Torvalds
○ Spare developers worldwide to work on your SoC
○ Solve the problem with community
○ Allow customers to work on cutting edge features of kernel
○ Make use of LTS kernel
○ Build up Open Source reputation

● Why a random developer should upstream?
○ Gain knowledge
○ Get yourself listed in MAINTAINERS file
○ Send pull requests to arm-soc maintainers
○ Gain reputation and become famous!



ARM vs ARM64 in Linux Kernel (Simplistic)
● This is not a performance comparison
● ARM

○ No vendor based DTS hierarchy (for now)
■ All SoC DTS are listed under: `arch/arm/boot/dts/`

○ Need SoC specific code to start secondary processors
■ Don’t use “pen_release” stuff 

○ Missing standardization
■ It comes from the architecture

○ Patches need to be prefixed with `ARM:`
○ Mailing list for Pull Req and Patches to arm-soc maintainers: soc@kernel.org

■ Not to be used for other purposes
■ For general discussions/patches, use: linux-arm-kernel@lists.infradead.org



ARM vs ARM64 in Linux Kernel Contd...
● ARM64

○ Vendor based DTS hierarchy exists
■ For instance, `arch/arm64/boot/dts/actions/` 

○ No need of SoC specific code to start Secondary processors
■ Generic code exists which make use of PSCI

○ Much more standardized
■ It comes from the architecture

○ Patches need to be prefixed with `arm64:`
○ Mailing list for Pull Req and Patches to arm-soc maintainers: soc@kernel.org

■ Not to be used for other purposes
■ For general discussions/patches, use: linux-arm-kernel@lists.infradead.org



ARM64 SoC Pull Request Tips
● Only applicable to new SoC families
● Rule of thumb: Start small and build it big
● Push the code to open Git environment

○ Github repository is fine
● Base your changes on earlier RCs

○ Preferably `-rc2`
● Make sure they build and collect all Acks/Reviews
● Devicetree binding patches should come first
● Create and push the signed tag to Git tree
● Briefly explain the effects of the Pull Request in signed tag

○ Do not copy paste the commit’s subject
○ Tag description should justify why your code needs to be pulled in, high level 

overview of what is going on with the SoCs, what is still missing etc...
● Submit the Pull Requests soon after merge window

○ Make sure the drivers (if any) are picked up by subsystem maintainers



ARM64 SoC Upstreaming Checklist
● Below is the checklist based on my experience (order matters)

○ Basic SoC and board port
○ Add core SoC infrastructure
○ Bring up Non Volatile memory
○ Bring up Networking
○ Bring up Display and Audio
○ Add Nice-to-have features



Basic SoC and board support
● SoC should boot into initramfs with all CPUs
● Most of the time (depending on the SoC design), a single DTS can do the job
● Reuse the existing drivers present in mainline
● Following drivers are needed:

○ Serial
■ Preferably with earlycon to ease debugging

○ IRQ
■ Check if the SoC has GIC as the first level* interrupt controller routing interrupt to the SoC

○ Timer
■ Check if the SoC has per core architectured timer

○ PSCI
■ EL3 firmware should support PSCI interface

● Add a development board based on the SoC and enable exposed serial ports
● Add the device tree binding for the SoC

○ Preferably in JSON schema
● https://lkml.org/lkml/2019/1/25/909



Add Core SoC Infrastructure
● SoC should boot into initramfs with clk and gpio/pinctrl support
● This is the critical and often tough task
● Following drivers are needed:

○ Common clk driver - drivers/clk
■ Try to use clk_hw* APIs instead of the clk_* APIs
■ Don’t use strings for the parent clocks, use clk_hw instead
■ https://lkml.org/lkml/2019/2/26/811

○ Reset driver
■ Check if `reset-simple` driver can be used
■ If the reset functionality is provided by clock IP, then integrate it with common clk driver

○ Gpio driver - drivers/gpio
■ If a single IP exposes both Pinctrl and GPIO, use a single Pinctrl driver
■ Use hierarchical IRQ implementation if applicable
■ Include `linux/gpio/driver.h` instead of `linux/gpio.h`
■ Use libgpiod library to test - Do not use SYSFS

○ Pinctrl driver - drivers/pinctrl
■ Use `pinctrl-single` driver if applicable



Bring up Non-Volatile Memory
● SoC should boot a distro from any non-volatile memory attached to the SoC

○ Someone may use NFS in this stage but I don’t prefer!
● Enable the SoC architecture in ARM64 defconfig if applicable

○ The SoC family can only be enabled in defconfig if there are enough drivers for it
○ But it is good to enable once it can boot a distro

● Following drivers are needed:
○ DMA Engine driver

■ Start with memcpy and add slave support
○ I2C/SPI/SPMI driver

■ This depends on the PMIC used
○ Regulators/PMIC

■ Most of the regulators offer multi functionality, so use MFD glue
○ Non Volatile controller driver

■ This can be MMC/UFS/NAND/NOR/USB/PCI-E



Bring up Networking
● Establish basic network access to the board
● User should be able to update the distro
● One of the following drivers are needed:

○ Ethernet
■ MAC/MDIO driver
■ PCI-E driver

● If external Ethernet controller is used
○ WiFi

■ MMC driver
● If on-board WiFi is used

■ USB
■ PCI-E



Bring up Display and Audio
● SoC should drive any on-board display interface
● SoC should output audio through any interface
● Following drivers are needed:

○ Display
■ DSI driver
■ I2C/SPI driver

○ Audio
■ I2S driver
■ I2C/SPI driver
■ ALSA machine driver if required



Add Nice-to-have features
● Add the rest of the key features of the SoC
● Following functionalities could be added:

○ GPU support
■ Preferably OpenGPU :-)

○ Video Encoder/Decoder support
○ Camera support

■ MIPI CSI2/Parallel
○ Anything left in previous steps!



Questions?



Thank you
Join Linaro to accelerate deployment of your 
Arm-based solutions through collaboration

contactus@linaro.org 


