Upstreaming ARM64 "
SoC's easier than
before connect

San Diego 2019

Manivannan Sadhasivam
Kernel Engineer, Linaro-96Boards

Contents

Overview

Who am 1?

Conventional question - Why upstreaming?
ARM vs ARM64 in Linux kernel (Simplistic)
ARM64 SoC Pull Request Tips

ARM64 SoC Upstreaming Checklist

Basic SoC and board support
Add core SoC infrastructure
Bring up Non Volatile memory
Bring up Networking

Bring up Display and Audio
Add Nice-to-have features

O O O O O O

Linaro
connect

oooooooooooo

Overview

What are we going to discuss?
o How should upstream ARM64 SoC’s in Linux kernel

What is not applicable?
o This talk is not about how to do generic kernel upstreaming
o For this, please refer: Upstreaming 101 track

Target audience

o SoC/Board vendors
o Developers familiar with kernel upstreaming process

Outcome
o Know how to do ARM64 SoC upstreaming seamlessly!

Linaro
connect

San Diego 2019

Who am |?

e Manivannan Sadhasivam - manivannan.sadhasivam@linaro.org

o Kernel Engineer at Linaro-96Boards
m Taking care of the SW ecosystem of 96Boards
m Frequently answer the question, “What is 96Boards?”
m Encouraging vendors to participate in Open Source activities
m Helping the community!

o Open Source contributor - OpenHub

m Contributing to Linux Kernel

e Maintaining Bitmain, RDA Micro SoCs

e Co-Maintaining Actions Semi SoCs

e Random contributions all over the kernel
m Contributing to U-Boot

e Maintaining Actions Semi SoCs

e Co-Maintaining HiSilicon SoCs

e Maintaining few Dev boards (Mostly 96Boards)
m Contributions to Zephyr

e Maintaining few SoCs, boards, drivers

e Maintaining LED subsystem

e Proposed LoRa support (under review)

Linaro
connect

San Diego 2019

Conventional question - Why SoC upstreaming?

e Why a vendor should upstream?

Maintaining downstream SoC port is hard

Show up your SoC in official kernel released by Linus Torvalds
Spare developers worldwide to work on your SoC

Solve the problem with community

Allow customers to work on cutting edge features of kernel
Make use of LTS kernel

Build up Open Source reputation

o O 0o 0O O O O

e Why arandom developer should upstream?
Gain knowledge

Get yourself listed in MAINTAINERS file
Send pull requests to arm-soc maintainers
Gain reputation and become famous!

o O O O

Linaro
connect
San Diego 2019

ARM vs ARM64 in Linux Kernel (Simplistic)

e This is not a performance comparison

e ARM

o No vendor based DTS hierarchy (for now)
m All SoC DTS are listed under: ‘arch/arm/boot/dts/
Need SoC specific code to start secondary processors

o

m Don’t use “pen_release” stuff

(@)

Missing standardization
m It comes from the architecture
Patches need to be prefixed with "ARM:

Mailing list for Pull Req and Patches to arm-soc maintainers: soc@kernel.org

(@)

O

s Not to be used for other purposes
m For general discussions/patches, use: linux-arm-kernel@lists.infradead.org

Linaro
connect

San Diego 2019

ARM vs ARMG64 in Linux Kernel Contd...

e ARMOG4

o Vendor based DTS hierarchy exists
m Forinstance, ‘arch/arm64/boot/dts/actions/

o No need of SoC specific code to start Secondary processors
m Generic code exists which make use of PSCI
o Much more standardized
m It comes from the architecture
o Patches need to be prefixed with ‘arm64:’
o Mailing list for Pull Req and Patches to arm-soc maintainers: soc@kernel.org

s Not to be used for other purposes
m For general discussions/patches, use: [inux-arm-kernel@lists.infradead.org

"=\ Linaro
)) connect

o ' San Diego 2019

ARM64 SoC Pull Request Tips

Only applicable to new SoC families
Rule of thumb: Start small and build it big
e Push the code to open Git environment
o Github repository is fine
e Base your changes on earlier RCs
o Preferably "-rc2’
Make sure they build and collect all Acks/Reviews
Devicetree binding patches should come first
Create and push the signed tag to Git tree
Briefly explain the effects of the Pull Request in signed tag
o Do not copy paste the commit’s subject

o Tag description should justify why your code needs to be pulled in, high level
overview of what is going on with the SoCs, what is still missing etc...

e Submit the Pull Requests soon after merge window
o Make sure the drivers (if any) are picked up by subsystem maintainers

Linaro
connect

000000000000

ARMG64 SoC Upstreaming Checklist

Below is the checklist based on my experience (order matters)

O O O O O O

Basic SoC and board port
Add core SoC infrastructure
Bring up Non Volatile memory
Bring up Networking

Bring up Display and Audio
Add Nice-to-have features

@

Linaro
connect
San Diego 2019

Basic SoC and board support

e SoC should boot into initramfs with all CPUs
e Most of the time (depending on the SoC design), a single DTS can do the job
e Reuse the existing drivers present in mainline
e Following drivers are needed:
o Serial
m Preferably with earlycon to ease debugging
o IRQ
m Checkif the SoC has GIC as the first level* interrupt controller routing interrupt to the SoC
o Timer
m Check if the SoC has per core architectured timer
o PSCI

m EL3 firmware should support PSCl interface
e Add a development board based on the SoC and enable exposed serial ports
e Add the device tree binding for the SoC
o Preferably in JSON schema
e https://Ikml.org/lkml/2019/1/25/909

Linaro
connect
San Diego 2019

Add Core SoC Infrastructure

e SoC should boot into initramfs with clk and gpio/pinctrl support
e This is the critical and often tough task

e Following drivers are needed:

o Common clk driver - drivers/clk
m Tryto use clk_hw* APIs instead of the clk_* APIs
m Don’t use strings for the parent clocks, use clk_hw instead
m https:/lkml.org/lkml/2019/2/26/811
o Resetdriver
m Check if ‘reset-simple’ driver can be used
m If the reset functionality is provided by clock IP, then integrate it with common clk driver
o Gpio driver - drivers/gpio
m If asingle IP exposes both Pinctrl and GPIO, use a single Pinctrl driver
m Use hierarchical IRQ implementation if applicable
m Include ‘linux/gpio/driver.h" instead of “linux/gpio.h’
m Use libgpiod library to test - Do not use SYSFS
o Pinctrl driver - drivers/pinctrl
m Use "pinctrl-single’ driver if applicable

Linaro
connect

San Diego 2019

Bring up Non-Volatile Memory

e SoC should boot a distro from any non-volatile memory attached to the SoC
o Someone may use NFS in this stage but | don’t prefer!

e Enable the SoC architecture in ARM64 defconfig if applicable
o The SoC family can only be enabled in defconfig if there are enough drivers for it
o Butitis good to enable once it can boot a distro
e Following drivers are needed:
o DMA Engine driver
m Start with memcpy and add slave support
o |12C/SPI/SPMI driver
m This depends on the PMIC used
o Regulators/PMIC
m Most of the regulators offer multi functionality, so use MFD glue
o Non Volatile controller driver
m This can be MMC/UFS/NAND/NOR/USB/PCI-E

Linaro
connect
San Diego 2019

Bring up Networking

e Establish basic network access to the board
e User should be able to update the distro

e One of the following drivers are needed:

o Ethernet
m MAC/MDIO driver
m PCI-E driver
e If external Ethernet controller is used
o WiFi
m MMC driver
e If on-board WiFi is used
m USB
m PCI-E

)"\ Linaro
)) connect

o San Diego 2019

Bring up Display and Audio

e SoC should drive any on-board display interface
e SoC should output audio through any interface
e Following drivers are needed:

o Display

m DSl driver

m |2C/SPI driver
o Audio

m |2S driver

m |2C/SPI driver
m ALSA machine driver if required

Linaro
‘ @ connect
San Diego 2019

Add Nice-to-have features

e Add the rest of the key features of the SoC

e Following functionalities could be added:

o GPU support
m Preferably OpenGPU :-)
o Video Encoder/Decoder support

o Camera support
m MIPI CSI2/Parallel
o Anything left in previous steps!

Linaro
‘ @ connect
San Diego 2019

Questions?

0

Thank you = ©

- g—— Linaro
Join Linaro to accelerate deployment of your ey ol S C?I;]nggt
Arm-based solutions through collaboration 7] o

contactus@linaro.org

