RDK 3.0 and Secure Decryption on i.MX8MQ

Moorthy B S
moorthy.baskaravenkatraman-sambamoorthy@linaro.org
Agenda

- RDK 3.0 Features
- 64bit support on RDK Video profiles - media client & hybrid
- RDK Yocto build - Thud support
- RDK upstreaming
- Thunder Framework with WPE Webkit Browser
- Secure decryption using OPTEE on WPE with EME 3.0
Introduction

- **Reference Design Kit (RDK)**
 - open source software solution for connected homes that provides a common framework for powering customer-premises equipment (CPE) such as set-top boxes
 - standardizes the core functions of Video, Broadband, Camera and IoT devices
 - contains software components, tools and documentation that provides faster development of standard Linux based equipments

 Link - https://wiki.rdkcentral.com/display/RDK/Overview

- **RDK Evolution**
 - RDK 1.0 - RDK base version
 - RDK 2.0 - TR69 Host Interface, HDMI-CEC, Storage Manager, QtWebKit, etc.
 - RDK 3.0 - Spark Framework, AAMP and WPE WebKit based RDK browser
RDK 3.0 Features

Spark Framework *(pxScene)*
- Open source, cross-platform windowing framework exposed to Javascript (JS) engine
- Core element for JS Engine *(pxCore)* contains Javascript Interface and Native windowing interface
- Framework application engine that contains JS bindings and handles 2D scene graph
- Uses ESSOS - simple library, companion of westeros compositor that can create application and runs as either native EGL or wayland clients

Advanced Adaptive Media Player *(aamp)*
- Media player based on gstreamer that plays media content over Internet Protocol (IP)
- Supports HTTP Live Streaming (HLS) and MPEG DASH streams

WPE based RDK browser *(rdkbrowser2)*
- Simple browser application that instantiates WPE WebKit
64 bit support on RDK - Overview

RDK Video Profiles

* Media Client - IP-only or QAM device profile mainly uses components such as Westeros (wayland) compositor, gstreamer media framework with basic open source components like Linux kernel, busybox, OpenSSL, UPnP and so on
* Hybrid - combination of both IP-only and QAM in a single device

Why RDK in 64bit?

- RDK currently available on 32-bit ARM platforms
- Freescale provides 64bit EGL library support for imx8 platforms

Why Thud Migration?

- RDK maintains yocto build system with daisy and morty support
- Freescale provides yocto meta (SoC) layer is based on thud
Efforts on 64-bit compatibility

MSO Layer

RDK 3.0
- westeros
- rdkbrowser2
- app manager
- Aamp player
- Aamp gst plugin
- pxScene
- rtremote
- RDK logger
- gstreamer
- Playersinkbin (gst plugin)
- RMF streamer
- RDK media framework
- iarm-bus
- Service manager
- Device settings
- Storage manager
- iarm-hal
- ds-hal
- iarm-manager
- Host IF agent
- tr69
- systemd
- busybox
- core-utils
- RDK Base rootfs
- curl
- dropbear
- gupnp
- lighttpd

SoC Layer
- OpenGL / ES
- Linux Kernel
- Drivers
- decoders
- Gstreamer plugins

- Linaro Contribution on 64bit
- Open source / embedded components
- RDK open source components
- RDK components publicly open
Challenges on 64-bit compatibility

<table>
<thead>
<tr>
<th>RDK Components</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>device settings</td>
<td>32-bit integer device handle changed to compatible pointer type (intptr_t)</td>
</tr>
<tr>
<td>pxCore, pxScene</td>
<td>Enabled ‘aarch64’ machine support</td>
</tr>
<tr>
<td>rtremote</td>
<td>‘aarch64’ support added for value reader and writer of IPC module https://github.com/pxscene/rtRemote/pull/4</td>
</tr>
<tr>
<td>rmfosal</td>
<td>32-bit ‘handle’ changed to compatible pointer type (intptr_t)</td>
</tr>
<tr>
<td>rmfgeneric</td>
<td>32-bit integer handles are changed to pointer type (uintptr_t) for compatibility. Handled ‘Port number’ type casting from integer pointer to integer.</td>
</tr>
<tr>
<td>rmfstreamer</td>
<td>Type definition for 64-bit integers in 32-bit architecture are defined for machines other than ‘aarch64’. Used predefined macros (aarch64)</td>
</tr>
<tr>
<td>iarmmgrs</td>
<td>Passing ‘unsigned int’ (32bit) type to ‘size_t’ pointers in function arguments are generalized</td>
</tr>
</tbody>
</table>
RDK yocto build system

- RDK uses **yocto project** build system and currently it supports on daisy, krogoth and morty versions
- RDK uses openembedded components such as busybox, systemd, core-utils, GUPnP, curl and so on from openembedded-core yocto layer
- RDK doesn’t allow GPLv3+ / LGPLv3+ licensing components; uses meta-gplv2 layer
- RDK maintains all its components in different meta-layers such as
 - *meta-rdk*- provides RDK distros and contains base components, package groups and image bb files
 - *meta-rdk-video* - components for video profiles
 - *meta-rdk-ext* - enhancements / RDK specific changes on open source components
- RDK maintains meta layers meta-cmf, meta-cmf-video and others in order to override the URI's to point to open source repositories from code.rdkcentral.com
Thud Migration Approach

All RDK meta layers are generic and it made compatible to Thud based system.
Switched open embedded layers revisions to Thud (Yocto 2.6)
- openembedded-core - thud branch, meta-openembedded - thud branch
- bitbake - 1.40, Toolchain - gcc 8.2
- SoC Layer - meta-freescale - master branch
- Meta-wpe - master branch - westeros is picked from WPE layer as Compositor plugin depends on westeros maintained in meta-wpe

A new layer (meta-cmf-freescale) is introduced to have SoC specific RDK changes.

Open embedded components thud version components alternatives

systemd - 1.239 openssl - 1.1.1b 1.0.2o
glibc - 2.28 gnuTLS - 3.6.4 3.3.x
busybox - 1.29.3 gmp - 6.1.2 4.2.1
dropbear - 2018.76 nettle - 3.4 2.7.1
dbus - 1.12
gnutuuu - 1.0.2
Challenges on Thud Migration

- To check the compatibility and dependency for open source components from oe-core layer’s thud branch
- Meta-rdk-ext layer applies RDK specific patches over few open source components. Repatching the changes on new versions
- gcc 8.2 causes lot of build errors where turns warnings to errors. Fixes made on source code / removes compilation flags
- RDK Media player (aamp) - hangs and reboots the system
 - A function turns to infinite looping due to gcc 8.2 Optimization flags
 - Removed align-loops and align-jumps (-fno-align-loops -fno-align-jumps)
- Components build and run time dependencies
 - Latest yocto system introduces a task prepare_recipe_sysroot() that generates sysroots on work directory whereas old version generates sysroots on a common directory
 - Need to add some more dependencies explicitly to RDK components
RDK Media Framework (RMF)

- Media Framework based on Gstreamer but abstraction of general Source, Sink and Filter elements
- Implements different sources and sinks for DVR, QAM and http (HN)

playersinkbin

- A gstreamer based plugin (GstBin) that instantiates SoC specific decoders & sinks and completes a media pipeline
- Developed playersinkbin for i.MX8MQ with SoC specific video decoder plugin
- General gstreamer pipeline using playersinkbin

```
$ gst-launch-1.0 httpsrc location=<url> ! playersinkbin
tsdemux
```

![Diagram of media pipeline with gstreamer elements](image-url)
RDK Upstreaming

- Upstreamed 64-bit and thud compatibility changes to Comcast gerrit’s feature branch as these changes are huge and affected on many of the components
- Build and regression testing validation on existing RDK devices
- Later to Build and Functional tests, all changes will be proposed to respective stable branch of Comcast gerrit
- Once the changes are merged to the stable branch, that will be lands on RDK CMF repositories

Documentation

Efforts on 64bit and Thud compatibility changes are documented in RDK Wiki - https://wiki.rdkcentral.com/display/RDK/RDK+porting+on+64bit+i.MX8MQ+EVK+using+Thud+Yocto+2.6

Procedure to build RDK on i.MX8MQ documentation - https://wiki.rdkcentral.com/display/RDK/Build+Procedure+for+64bit+RDK+Media+Client+using+Thud+Yocto+2.6
Other Contributions

Westeros
- DRM mode selection based on native window size - [commit](#)
- Adding EGL CFLAGS on westeros_gl, essos
 - [westeros commit1](#), [westeros commit2](#) and [westeros commit3](#)
- Enabling dynamic mode selection module on Direct Rendering Manager (DRM)
 - [westeros commit](#)
 - [https://github.com/WebPlatformForEmbedded/meta-wpe/pull/337](#)
- wrp-c : replacing strncpy with memcpy due to gcc 8.x - [https://github.com/xmidt-org/wrp-c/pull/80](#)

WPE: EGL CFLags inclusion
- [https://github.com/WebPlatformForEmbedded/WPEBackend-rdk/pull/34](#)
- [https://github.com/WebPlatformForEmbedded/WPEWebKit/pull/607](#)

Playready CDM(i) on WPE: Playready 3.3 support fixes -
[https://github.com/WebPlatformForEmbedded/OCDM-Playready/pull/15](#)
Thunder Framework

➢ Open source simple framework for embedded device browser experience
➢ Plugin based framework with inter-plugin dependencies
➢ Framework core
 ○ a core element with web API, RPC and controller for loading plugins
 ○ Contains Json parsers, WebSocket and Web API capabilities
➢ Framework plugins
 ○ Plugin for browser - instantiates WPE webkit and controlled using Web API
 ○ Plugin for Compositor - creates westeros compositor for wayland display
 ○ Plugin for network - configuring network for connection
➢ Framework UI
 ○ Web based User Interface (UI) to control framework and plugins remotely
 ○ Opens the webserver and interact with plugins (start / stop)
Secure Decryption on WPE with EME 3.0

Thunder Framework

Compositor

EME App.

Open CDM

EME 3.0

WPE WebKit

MSE

Gstreamer pipeline

RPC ->

payload

opaque

<- Callbacks

Shared buffer

OCDM Server

Playready.drm

Widevine.drm

Clearkey.drm

CDM(i)

loads

loads

loads

Playready

Widevine

OPTEE

Playready TA

Widevine TA

From Linaro

Linaro Enhancement on WPE

WPE & Open source
Playready Decryption Flow

- openCDM implements in gstreamer part of WebKit and Thunder framework loads OCDM server as a plugin
- Shared Buffer implements from the Framework and used for Protected content and Opaque (clear) content data exchange

OCDM Server
- Key Systems configuration from a JSON file
- CDM(i) implementation library for each key system under a specified directory
- Creates OpenCDM session based on the key requested from License Server
- Uses Producer-Consumer threads to synchronously exchange encrypted and decrypted data through OCDM session

Open Platform - TEE
- A Trusted Application (TA) will be loaded for each Key Systems in TrustZone (OPTEE) and TEE session will be initialized
- Decryption does in the Trusted Zone (OPTEE)
Current & Future work

Current Activities

● RDK Upstreaming
 - Validation Functional & Regression testing on existing RDK devices
 - Upstreaming to Comcast gerrits
 - Landing changes to RDK CMF community

● Widevine Integration
 - OEM crypto library integration
 - CDMi implementation with DRM APIs

Future Activities

● Secure Data Path (SDP) integration for fully Secure Video playback
● Contribution towards RDK Camera profile use cases
● RDK 4.0 bringup with Yocto 2.7 (warrior) support
Thank you

Join Linaro to accelerate deployment of your Arm-based solutions through collaboration

contactus@linaro.org