
Linux Kernel
Functional Testing
(LKFT) 2.0
https://lkft.linaro.org
lkft@linaro.org
freenode/#linaro-lkft

Dan Rue
dan.rue@linaro.org
 @mndrue

Intro: LKFT Today
● Architectures: arm32, arm64, i386, x86_64
● Hardware: X15, DragonBoard 410c, Juno, HiKey, x86_64 servers
● QEMU: x86* on x86_64 servers, arm* on SynQuacer arm64 hosts
● Linux Branches:

○ LTS: 4.4, 4.9, 4.14, 4.19
○ Latest stable (5.2, 5.3), mainline, next

● Tests: LTP, libhugetlbfs, perf, v4l2, kvm-unit-tests, s-suite (i/o benchmark),
kselftests

● Most tests run in all environments on every push for a total of ~25,000 tests
per push.

Million Tests Each Week

68 Million to date

The Android robot is reproduced or modified from work created and shared by Google and
used according to terms described in the Creative Commons 3.0 Attribution License.

LKFT Android Ran 5 million

tests THIS WEEK

97 Million to date

https://www.google.com/url?q=https://creativecommons.org/licenses/by/3.0/&sa=D&ust=1569518759318000&usg=AFQjCNGbuOn7_Ur8nAOLZscsCzRCtXZs2A

Disclaimer

LKFT 1.0: Build Design
- OpenEmbedded build
- Jenkins based
- Full OS build for every kernel/board combination
- Fixed and shared build capacity
- Build scripts colocated with job config
- Jenkins job file per branch

LKFT 1.0: Build Implications
- Builds can be slow
- Builds can be queued
- Ancillary kernels require a full build (e.g.

KASAN)... so we don’t do them
- Builds are hard to reproduce outside of jenkins

environment due to tight coupling
- Changes difficult to test
- Kernel builds use bitbake

- log is enormous
- config is derived
- failures MIGHT be kernel related (but

probably aren’t)

LKFT 2.0: Build Design
- KernelCI-style builds

- Root filesystem build independently from kernel
- Kernel builds are independent and native
- Docker-based build environments

- Build servers scale dynamically
- 0 builds, 0 build servers. 20 builds, 20 build servers.

- Artifacts stored and served from cloud storage (s3) directly

DEPLOYED VIA

LKFT 2.0: Build Implications
- Build times become consistent, and fast
- Ancillary kernels possible and trivial
- Builds are easily reproducible outside of

jenkins environment
- Staging environment provides ability to

test changes to system
- Kernel build is simple; users will not have

to deal with unfamiliar tools
- Artifact hosting is “serverless”
- Compatibility with kernelCI!

LKFT 1.0: Boot Design
- Boards boot using either u-boot or fastboot
- Some boards use system images with kernel baked in

- X15, qemu_x86/i386 (!), hikey, db410c
- Juno-r2 flashes firmware every run to guarantee correctness
- LAVA job templates colocated with jenkins config

QEMU x86_64 LAVA Job

LKFT 1.0: Boot Implications
- Bisection difficult due to per-board

and rootfs requirements
- “fastboot flash” slow, and causes

contention on dispatcher
- Juno spends 10 minutes re-flashing

firmware every run
- LAVA job generation is not portable

or reusable (it’s baked in jenkins)

LKFT 2.0: Boot Design
- LAVA jobs all take a rootfs parameter and a kernel parameter

- If a baked rootfs is required, it is done in the dispatcher
- Fastboot flash is avoided where possible
- Use NFS based rootfs where possible
- LAVA job generation abstracted to its own tool

https://www.google.com/url?q=https://github.com/Linaro/lava-test-plans&sa=D&ust=1569518766374000&usg=AFQjCNFL12puZjjLWdbdtd74ZDys19cYmw

LKFT 2.0: Boot Implications
- Better fastboot provisioning options

- Network boot when possible
- inline image building
- fastboot-nfs

- LAVA job generation is sharable and
portable

- Bisection becomes “easy”
- KernelCI compatibility!

LKFT 1.0: Test Design
- Tests generally live in

Linaro/test-definitions on GitHub
- Test binaries usually built into root

filesystems
- Handy for kselftest….

- Single root filesystem for all tests

👏 test-definitions is general purpose 👏
Not coupled to LKFT
Not coupled to LAVA

https://www.google.com/url?q=https://github.com/Linaro/test-definitions/&sa=D&ust=1569518766789000&usg=AFQjCNFDamwHHxLsU026kr3d-kn6739gdA

LKFT 1.0: Test Implications
- Space constraints in rootfs (because we only get 1!)

LKFT 2.0: Test Design
- Kselftest built along with kernel and overlayed into rootfs via LAVA at runtime
- Possible to have different rootfs for different tests, just as with kernels
- Improved parsing for kernel warnings and errors
- Improved TAP support

https://www.google.com/url?q=https://github.com/Linaro/squadplugins/pull/13&sa=D&ust=1569518768179000&usg=AFQjCNHsEUTmZJWQvKxtIdGz0lY4KfvvCA

LKFT 2.0: Test Implications
- TAP parsing directly in LAVA
- Kernel log parsing in SQUAD

LKFT 1.0: Report Design
- Template based reports come directly

from SQUAD
- Bugs tracked at bugs.linaro.org under

product “Kernel Functional Testing”
- Known issues managed in SQUAD to

control for failing and flaky tests (see
qa-reports-known-issues repo)

- Some reports (stable) generated using
SQUAD API and python

- Most upstream reports are manually
curated

- Most bugs are manually reported

Jinja is your friend?

https://www.google.com/url?q=https://bugs.linaro.org/buglist.cgi?list_id%3D22067%26product%3DKernel%2520Functional%2520Testing%26query_format%3Dadvanced%26resolution%3D---&sa=D&ust=1569518768581000&usg=AFQjCNHDU8OT3wGcpkVvMWNOmaL6R84QNA
https://www.google.com/url?q=https://github.com/Linaro/qa-reports-known-issues&sa=D&ust=1569518768581000&usg=AFQjCNH5hm0tK2Y20GLtp0NiHdCk_ZFnxQ

LKFT 1.0: Report Implications
- Generic reporting - one

template/recipient set per branch
- Naive reports - false failures
- Limited ability to provide

customization
- Valuable data gathered but stuck in

giant database
- Signal:noise ratio not great

LKFT 2.0: Report Design
- Build (or hopefully find!) reporting and analytics layer

- Perform cross branch and cross time analysis
- Generate fine grained, custom reports
- Support arbitrary frequency
- Integrate with multiple data sources
- Results aggregation? (see kcidb project)
- Automatically identify flaky results. Confidence scoring?

https://www.google.com/url?q=https://github.com/spbnick/kcidb&sa=D&ust=1569518769446000&usg=AFQjCNG2Ys2gojTu_K0_VOKjdnXnWh-v3A
https://www.google.com/url?q=https://projects.linaro.org/browse/KV-238&sa=D&ust=1569518769775000&usg=AFQjCNHCzMli0MHnLnZu0IwUozOlT9b1ZA
https://www.google.com/url?q=https://github.com/Linaro/lkft-tools&sa=D&ust=1569518769776000&usg=AFQjCNGGAHqufmpjlKh7081fzH_EgiaG5A

LKFT 2.0: Report Implications
- Achieve high signal:noise ratio
- Support individual developers, and their

personal preferences
- Slice data as needed. E.g.

- Subsystem-specific reports
- Test-specific reports
- Board-specific reports

Top 5 Takeaways
💕 kernelCI and LKFT help each other 💕

Kernel builds are as developers expect

Cloud-scale kernel build capacity

Faster and easier to identify root causes of
regressions

Reports become more useful to users

tl;dr

We get to say “YES” more.

Thank You!
https://lkft.linaro.org
lkft@linaro.org
freenode/#linaro-lkft

Dan Rue
dan.rue@linaro.org
 @mndrue

