Rust for
Linux

Miguel Ojeda

ojeda@kernel.org

Credits & Acknowledgments

Rust

...for being a breath of fresh air

Kernel maintainers

...for being open-minded

Everyone that has helped Rust for Linux

(see credits in the patch series)

History

30 years of Linux 30 years of ISO C

Love story*

30 years of Linux 30 years of ISO C

* Terms and Conditions Apply.

An easy task

An easy task

“Do you see any language except C which is

suitable for development of operating systems?”

An easy task

“Do you see any language except C which is

suitable for development of operating systems?”

“I like interacting with hardware from a software perspective.

And | have yet to see a language that comes even close to c.”

— Linus Torvalds 2012

Why is C a good language for the kernel?

“You can use C to generate good

code for hardware.” Fact
“When | read C, | know what the C level
assembly language will look like.” ow-(eve
“The people that designed C ... designed it g, /
at a time when compilers had to be simple.” mple
“If you think like a computer, writing . .
Fite the domain

C actually makes sense.”

But...

Undefined Behavior

3.4.3

1 undefined behavior
behavior, upon use of a nonportable or erroneous program construct or of erroneous data, for which
this document imposes no requirements

2 Note 1 to entry: Possible undefined behavior ranges from ignoring the situation completely with unpredictable results,
to behaving during translation or program execution in a documented manner characteristic of the environment (with or
without the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic
message).

3 Note 2 to entry:].2 gives an overview over properties of C programs that lead to undefined behavior.

4 EXAMPLE An example of undefined behavior is the behavior on dereferencing a null pointer.

— N2596 C2x Working Draft

Examples of UB

— The value of the second operand of the / or % operator is zero (6.5.5).

int f(int a, int b) {
return a / b;

Examples of UB

— The value of the second operand of the / or % operator is zero (6.5.5).

int f(int a, int b) {
return a / b;

UB vx f(x, 0);

Examples of UB

Any other inputs that trigger UB?

int f(int a, int b) {
return a / b;

Examples of UB

Any other inputs that trigger UB?

int f(int a, int b) {
return a / b;

}

UB f(INT_MIN, -1):

Examples of UB

Examples of UB

— The value of the second operand of the / or % operator is zero (6.5.5).

Examples of UB

pot
— TL’Y\‘ 3 eykec’o . second operand of the / or % operator is zero (6.5.5).
&=

Examples of UB ace (o

— An ~@CY_ second operand of the / or % operator is zero (6.5.5).

1 op;
Ject ; Vgt
ferl.e
d ¢
O OUtSIde Of i
Its Jif,
tIIDe (
6.2 4).

>3

Ao

Examy. ez, " '1B
O

>
Examﬁ@ vay 1)B
e o,
Q
Lo,
Q.

tomatic storage duration is

ntg
aek
mda‘a‘

used while it {s indeterminate (6.2.4,

value of an object with au

— LhHe
6.7.9, 6.8).
axyingp- L
— UO{\ of LV/?o
S— A qu Se 5
- Of 1. "y, , "perat
e bc?s or is zero (6.5.5)
@Od
GQI .
YA

2 B)
&>
ce
@t te (624,
™ TIIG I ‘1)B a da t is indetermind
Exam, Uye o . sed while i
% Ol e - ~o duration
A trap representation IS read by an Ivalye €Xpression that dpeg not haye character type (6.2.6.1)
QRJEEs = 7 . B.5).
e value of an gy W?OSGI . ator is zero (6
— Th 6.8). (@) If@l‘ aper
6.7.9, 6. oo d operand of ti.. ”?@/zes
«e" second op ey %
s,
—_ ~— e
4 Objecy 1s ferred M 5-2.4)
— to Outy; b

~ ;
Exanlr., 3/(1@ JB aC ek
of, da\a E
A trap repres . 0 }) £ - it 1s mdetel‘mmate (6 5 4
®Ntation jg e, dby an] - ~o duration 18 used whﬂe it1
. an
_ The value of an object Wit - value €Xpression that doe
T W S
6.7.9,6.8)- Q& avy* . 4 Not haye character type
goot e .

g
— ~ 4 <etW - second operand of ti.. G e , ODeraff“‘ :Abt Jcted (65-6)

%
4
e 1B
Atrapre Ofap 1&\
L taton e
The value of an object wu??g by an Iy e iR P - d&
6.7.9,638) alue €Xpres r.a tion is used while it 18 indeterminate (624
o . O{\ 0& 7% Y» v, s S10n that dOe
~—~ An \[ec\}‘,x]208 S not have .
_ = BECO Q. Cha
= Oby; nd operand of oz <
eCt t1.. 1(1122 - Pe (6.2 6
18 »- - o, Operator - el
__ Pointers that do not point into, or just peyond, the same array object are subtracted (6.5:6)-
- to RA |
Ide “se
Of jt e
S]1 £ o
t1 %)

So, what does Rust offer?

So, what does Rust offer?

Safety

Safety in Rust

No undefined behavior
similar to C (ISO/IEC 9899)

Safety

Safety in Rust

+

Safety in “safety-critical”

as in functional safety (DO-178B/C, ISO 26262, EN 50128...)

4+ = =

Safety

abort()sinC
= are

Rust-safe

Safety

abort()sinC

— are

Rust-safe

Even if your company goes bankrupt.

Safety

abort()sinC

— are

Rust-safe

Even if your company goes bankrupt.

Even if somebody is injured.

Avoiding UB
int f(int a, int b) {

if (b ==
abort();

if (a == INT_MIN && b == -1)
abort();

return a / b;

Avoiding UB

int f(int a, int b) {
if (b == 0)
abort();

if (a == INT_MIN && b == -1)

abort();

return a / b;

Fic a cafe function

Safety

Rust panics

— are

Rust-safe

Safety

Kernel panics

— are

Rust-safe

Safety

Uses after free, null derefs, double frees,
OOB accesses, uninitialized memory reads,

invalid inhabitants, data races...

are not

Rust-safe

Safety

Uses after free, null derefs, double frees,
OOB accesses, uninitialized memory reads,

invalid inhabitants, data races...

= are not

Rust-safe

Even if your system still works.

What else does Rust offer?

(anguage

What else does Rust offer?

Shared & exclusive references

Modules & visibility Generics Lifetimes
Stricter type system C an g“a?e Pattern matching
Safe/unsafe split RAII Sum types

Powerful hygienic and procedural macros

What else does Rust offer?

Freestanding standard library

What else does Rust offer?

Vocabulary types like

o Result and Option _
Pinning Formatting

Freestanding standard library

Checked, saturating & wrapping

Iterators
integer arithmetic primitives

What else does Rust offer?

[ooling

What else does Rust offer?

Documentation generator Unit & integration tests
Static analyzer C < Rust bindings generators
Linter

[ooling |
Macro debugging
Formatter

IDE tooling
Great compiler error messages

UBSAN:-like interpreter

What else does Rust offer?

Documentation generator Unit & integration tests
Static analyzer C < Rust bindings generators
Linter

[ooling
Macro debugging
Formatter

IDE tooling
Great compiler error messages

UBSAN:-like interpreter
plus the usual friends: gdb, 11db, perf, valgrind...

Where is the catch?

Where is the catch?

Cannot model everything = Unsafe code required

Where is the catch?

Cannot model everything = Unsafe code required

More information to provide = More complex language

Where is the catch?

Cannot model everything = Unsafe code required

More information to provide = More complex language

Extra runtime checks = Potentially expensive

Where is the catch?

Cannot model everything

More information to provide

Extra runtime checks

An extra language to learn

Unsafe code required

More complex language

Potentially expensive

Logistics & maintenance burden

Why is C a good language for the kernel?

“You can use C to generate good

code for hardware.” Fact
“When | read C, | know what the C level
assembly language will look like.” ow-(eve
“The people that designed C ... designed it g, /
at a time when compilers had to be simple.” mple
“If you think like a computer, writing . .
Fite the domain

C actually makes sense.”

R

¢t
Why is (% a good language for the kernel?

“You can use C to generate good

code for hardware.” Fags/eg’
“When | read C, | know what the C / /
assembly language will look like.” ow- evomet/‘meg’
“The people that designed C ... designed it ¢
at a time when compilers had to be simple.” Whp%at rea.//y
If you think like a computer, writing Fite the domain

C actually makes sense.”

An easy task

“Do you see any language except C which is

suitable for development of operating systems?”

“I like interacting with hardware from a software perspective.

And | have yet to see a language that comes even close to c.”

— Linus Torvalds 2012

An easy taslfmy be?

“Do you see any language except C which is

suitable for development of operating systems?”

“I like interacting with hardware from a software perspective.

And | have yet to see a language that comes even close to c.”

— Linus Torvalds 2012

Rust support in the kernel

@ Rust tree

library/

core
crate

H

alloc

crate

f\ Linux tree
:

-

(&

-~

rust/ include/
N 4
alloc kernel macros
crate crate crate
l J U N
- I
builtins exports helpers bindgen]
crate
4
Module

bindings
crate

Driver point of view

gh Linux tree
drivers/ include/ ——

foo/ / kernel \ ’ bindgen]
crate

my_foo W foo bar (bindings
driver J Cafe subsystem subsystem Unsafe L crate
Abstractions

A)

//// Forbidden! ////

Supported architectures

arm (armvo6 only)
arme4

powerpc (ppc641le only)
riscv (riscv64 only)

x86 (x86_64 only)

See Documentation/rust/arch-support.rst

Supported architectures

arm (armvo6 only)
arme4d ...Co f’ar./
powerpc (ppc641le only) 32-bit and other restrictions should be easy to remove

riscv (I‘iSCV64 only) Kernel LLVM builds work for mips and s390

GCC codegen paths should open up more

x86 (x86_64 only)

See Documentation/rust/arch-support.rst

Rust codegen paths for the kernel

rustc_codegen_gcc rustc_codegen_1l1lvm Rust GCC

Already pasces Mai Expected in 1-2 years
ain one

most ruste teste (rough ectimate)

Documentation

Crate kernel

[See all kernel's items J

Modules
Macros
Structs
Constants
Traits

Type Definitions

Crates

alloc
compiler_builtins
core

kernel

macros

All crates

Crate kernel &

[-]The kernel crate.

? ©

[-1lsrc]

This crate contains the kernel APIs that have been ported or wrapped for usage by Rust code in the kernel and is shared by all of

them.

In other words, all the rest of the Rust code in the kernel (e.g. kernel modules written in Rust) depends on core, alloc and this

crate.

If you need a kernel C API that is not ported or wrapped yet here, then do so first instead of bypassing this crate.

Modules

buffer
c_types
chrdev
file
file_operations
io_buffer
iov_iter
linked_list
miscdev
of

pages
platdev
prelude
nrint

Struct for writing to a pre-allocated buffer with the write! macro.

C types for the bindings.
Character devices.

Files and file descriptors.
File operations.

Buffers used in IO.

10 vector iterators.
Linked lists.
Miscellaneous devices.

Devicetree and Open Firmware abstractions.

Kernel page allocation and management.
Platform devices.
The kernel prelude.

Printino facilitiec

Struct Mutex

Methods

lock

new

Trait Implementations

Lock
NeedsLockClass
Send
Sync

Auto Trait Implementations

WUnpin

Blanket Implementations

Any
Borrow<T>
BorrowMut<T>

From<T>

o’ All crates v | Click or press ‘S’ to search, ‘?' for more options.. ? @

Struct kernel::sync:Mutex E [-1[src]

pub struct Mutex<T: ?Sized> { /*x fields omitted x/ }

[-] Exposes the kernel's struct mutex.When multiple threads attempt to lock the same mutex, only one at a time is allowed to
progress, the others will block (sleep) until the mutex is unlocked, at which point another thread will be allowed to wake up and
make progress.

A Mutex must first be initialised with a call to Mutex: : init before it can be used. The mutex_init macro is provided to
automatically assign a new lock class to a mutex instance.

Since it may block, Mutex needs to be used with care in atomic contexts.

Implementations
impl<T> Mutex<T> [src]
-1 pub unsafe fn new(t: T) -> Self [src]

Constructs a new mutex.
Safety

The caller must call Mutex: : init before using the mutex.

[-] Aimpl<T: 2Sized> Mutex<T> [src]

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
7

P N v RN — e e P MAT S S e W lrn T W P e s e T L el ey B T P b s ™ ey ' I = 3 A i, nim 0 S N\ e S A N T L

11/ ené.

11/
/// Used for 1interoperability with kernel APIs that take C strings.

#[repr(transparent)]
pub struct CStr([u8]);

impl CStr {
/// Returns the length of this string excluding "NUL".
#[inline]
pub const fn len(&self) -> usize {
self.len_with_nul() - 1

/// Returns the length of this string with "NUL'.
#[inline]
pub const fn len_with_nul(&self) -> usize {
// SAFETY: This 1is one of the invariant of "CStr'.
// We add a "unreachable_unchecked’ here to hint the optimizer that
// the value returned from this function is non-zero.
if self.0.is_empty() {
unsafe { core::hint::unreachable_unchecked() };

}
self.0.len()

Struct Mutex |

Methods

lock

new

Trait Implementations

Lock
NeedsLockClass
Send

Sync

Auto Trait Implementations

IUnpin

Blanket Implementations

Any
Borrow<T>
BorrowMut<T>

From<T>

s

All crates v opr

Results for pr

In Names (176)

kernel::print
kernel:platdev::PlatformDriver:probe
kernel::pr_err

kernel::pr_cont

kernel:pr_crit

kernel:pr_info

kernel:pr_warn

kernel::prelude

kernel::pr_alert

kernel::pr_emerg
kernel:linked_Llist::CursorMut:peek_prev
kernel::pr_notice
kernel::prelude:Vec:swap_remove
kernel::prelude:Box:is_prefix_of
kernel:prelude::Box:strip_prefix_of
alloc::prelude

core:prelude

coreziter:Product
core:ziter:Product:product
coreziter:Iterator:product
core:option::Option:=broduct

In Parameters (0) In Return Types (0)

Printing facilities.

Platform driver probe.

Prints an error-level message (level 3).

Continues a previous log message in the same line.
Prints a critical-level message (level 2).

Prints an info-level message (level 6).

Prints a warning-level message (level 4).

The kernel prelude.

Prints an alert-level message (level 1).

Prints an emergency-level message (level 0).

Returns the element immediately before the one the cursor ...

Prints a notice-level message (level 5).
Removes an element from the vector and returns it.

The alloc Prelude

The libcore prelude

Trait to represent types that can be created by ...

Method which takes an iterator and generates Self from ...
Iterates over the entire iterator, multiplying all the ...

Takes each element in the [Iterator]: ifitis a [Nonel. ...

Documentation code

/// Wraps the kernel's “struct task_struct'.
/17
/// # Invariants
/117
/// The pointer ‘Task::ptr® is non-null and valid. Its reference count is also non-zero.
/17
/// # Examples
/17
/// The following is an example of getting the PID of the current thread with
/// zero additional cost when compared to the C version:
/17
/177
/// # use kernel::prelude::*;
/// use kernel::task::Task;
/1]
/1] # fn test() {
/// Task::current().pid();
/1] # }
VAR
pub struct Task {
pub(crate) ptr: *mut bindings::task_struct,

Conditional compilation

Rust code has access to conditional compilation based on the kernel config

#[cfg(CONFIG_X)] //
#[cfg(CONFIG_X="y")] //
#[cfg(CONFIG_X="m")] //
#[cfg(not(CONFIG_X))] //

"CONFIG_X"
"CONFIG_X"
"CONFIG_X"
"CONFIG_X"

is
1s
is
1s

enabled ('y or "m’)

enabled as a built-in ('y’)

enabled as a module
disabled

(‘'m*)

Coding guidelines

No direct access to C bindings Rust 2018 edition & idioms
No undocumented public APIs No unneeded panics
No implicit unsafe block No infallible allocations

Docs follows Rust standard library style
// SAFETY proofs for all unsafe blocks
Clippy linting enabled

Automatic formatting enforced

Coding guidelines

No direct access to C bindings Rust 2018 edition & idioms
No undocumented public APIs No unneeded panics
No implicit unsafe block No infallible allocations

Docs follows Rust standard library style
// SAFETY proofs for all unsafe blocks
Clippy linting enabled

Automatic formatting enforced
Aiming to be as ctrict as possible

Abstractions code

/// Wraps the kernel's “struct file'.
/17
/// # Invariants
/17
/// The pointer “File::ptr° is non-null and valid.
/// Its reference count is also non-zero.
pub struct File {
pub(crate) ptr: *mut bindings::file,

impl File {

/// Constructs a new [struct file'] wrapper from a file descriptor.
/17
/// The file descriptor belongs to the current process.
pub fn from_fd(fd: u32) -> Result<Self> {

// SAFETY: FFI call, there are no requirements on "fd'.

let ptr = unsafe { bindings::fget(fd) };

if ptr.is_null() {

return Err(Error::EBADF);

// INVARIANTS: We checked that “ptr° is non-null, so it is valid.

// ~fget increments the ref count before returning.
Ok (Self { ptr })

/7

Driver code

static int pl@61_resume(struct device *dev) fn resume(data: &Ref<DeviceData>) -> Result {

{

int offset;
let inner = data.lock();
struct ple61 *ple61 = dev_get_drvdata(dev); let plo61 = data.resources().ok_or(Error::ENXIO)?;
for (offset = 0; offset < PLO61_GPIO_NR; offset++) { for offset in 0..PLB61_GPIO_NR {
if (ple61->csave_regs.gpio_dir & (BIT(offset))) if inner.csave_regs.gpio_dir & bit(offset) != 0 {
ple61_direction_output(&ple61->gc, offset, let v = inner.csave_regs.gpio_data & bit(offset) !'= 0;
ple61->csave_regs.gpio_data & let _ = <Self as gpio::Chip>::direction_output(
(BIT(offset))); data, offset.into(), v);
else } else {
ple61_direction_input(&pl@61->gc, offset); let _ = <Self as gpio::Chip>::direction_input(
data, offset.into());
}
} }
writeb(pl@61->csave_regs.gpio_is, ple61->base + GPIOIS); ple61.base.writeb(inner.csave_regs.gpio_is, GPIOIS);
writeb(pl@61->csave_regs.gpio_ibe, pl@61->base + GPIOIBE); ple61.base.writeb(inner.csave_regs.gpio_ibe, GPIOIBE);
writeb(pl@61->csave_regs.gpio_iev, ple@61->base + GPIOIEV); ple61.base.writeb(inner.csave_regs.gpio_iev, GPIOIEV);
writeb(pl@61->csave_regs.gpio_ie, ple61->base + GPIOIE); ple61.base.writeb(inner.csave_regs.gpio_ie, GPIOIE);
return 0; ok(())

Testing code

fn trim_whitespace(mut data: &[u8]) -> &[u8] {
//

#[cfg(test)]
mod tests {
use super::*;

#[test]

fn test_trim_whitespace() {
assert_eq! (trim_whitespace(b"foo "), b"foo");
assert_eq! (trim_whitespace(b" foo"), b"foo");

assert_eq! (trim_whitespace(b" foo "), b"foo");

117
/17
/17

Getting the current task and storing it in some struct. The reference count is automatically
incremented when creating "State’ and decremented when it is dropped:

/17

/17
/17
117
/17
/17
117
/17
/17
/17
/17
/17
117
/17
/17
117
/17
/17

use kernel::prelude::*;
use kernel::task::Task;

struct State {
creator: Task,
index: u32,

impl State {
fn new() -> Self {
Self {
creator: Task::current().clone(),
index: 9,

More details In...

Kangrejos Workshop
13-15 September

kangrejos.com

Linux Plumbers Conference
20-25 September

linuxplumbersconf.org

PLUMBERS
CONFERENCE
2021

https://kangrejos.com
https://linuxplumbersconf.org/

Rust for
Linux

Miguel Ojeda

ojeda@kernel.org

Backup slides

C Charter

6. Keep the spirit of C. The Committee kept as a major goal to preserve the traditional spirit of C. There are
many facets of the spirit of C, but the essence is a community sentiment of the underlying principles upon which
the C language is based. The C11 revision added a new facet f to the original list of facets. The new spirit of C
can be summarized in phrases like:

(a) Trust the programmer.

(b) Don't prevent the programmer from doing what needs to be done.
(c) Keep the language small and simple.

(d) Provide only one way to do an operation.

(e) Make it fast, even if it is not guaranteed to be portable.

(f) Make support for safety and security demonstrable.

— N2086 C2x Charter - Original Principles

12. Trust the programmer, as a goal, is outdated in respect to the security and safety programming
communities. While it should not be totally disregarded as a facet of the spirit of C, the C11 version of the C
Standard should take into account that programmers need the ability to check their work.

— N2086 C2x Charter - Additional Principles for C11

