

The beginnings - Arm ServerReady?

http://macchiatobin.net/product/macchiatobin-double-shot/

- Marvell Armada7k8k and SolidRun MacchiatoBin
- One of the first public arm64 UEFI ports in <u>Linaro OpenPlatformPkg</u>

The beginnings - Arm ServerReady?

http://macchiatobin.net/product/macchiatobin-double-shot/

- SBSA/SBBR evaluation in 2018/2019
 - SBSA level 1
 - UEFI 2.x
 - ACPI 6.0
 - SMBIOS 3.2
 - Minor remaining issues in SBBR tests
- Why it failed to get certified as <u>Arm</u> <u>ServerReady</u>?

The beginnings - Arm ServerReady?

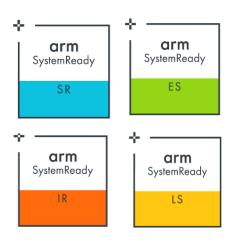
http://macchiatobin.net/product/macchiatobin-double-shot/

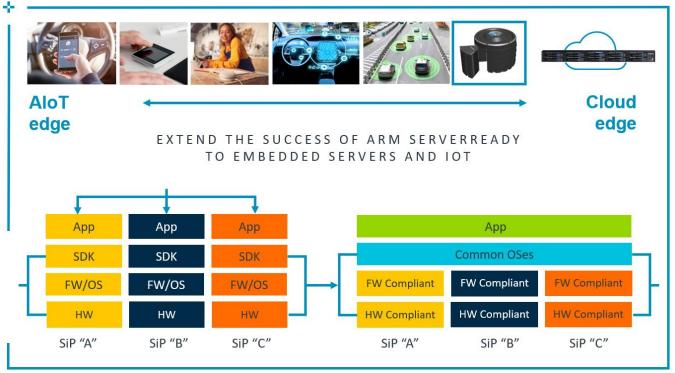
- It's not a server!
- Ecosystem was not ready.
- HW limitations
 - Non-standard PCle require quirks
 - Several non-discoverable controllers/platform devices, lacking ACPI support
 - FW cannot work around some of the SBSA compliance issues

Solution? SystemReady ES!

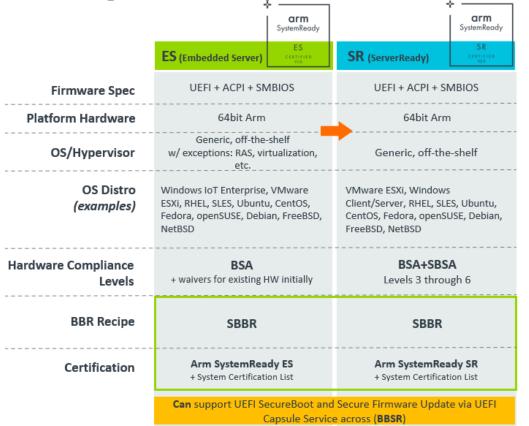
- SystemReady ES is perfect match for the Marvell SoCs
- Previous FW work paid off
- Already 3 systems certified!
 - Marvell OCTEON TX2 CN9130 Dev Board
 - SolidRun Macchiatobin Double Shot
 - SolidRun CN9132 CEx7 Eval Board

MacchiatoBin Double Shot


SolidRun CN9132 CEx7 Eval Board



Marvell® OCTEON TX2™ CN913X


Software Can Just Work on Armbased Devices

SystemReady ES - requirements

arm SystemReady

SystemReady ES – why is it needed?

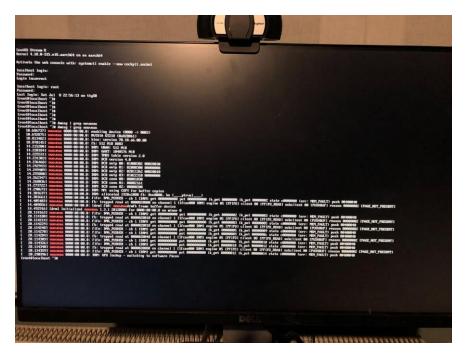
- Arm <u>ServerReady</u> had great success in achieving its goals (standardizing Arm servers, hyperscale/datacentre segments)
- Arm <u>SystemReady</u> was launched @ Arm DevSummit Oct 2020 to continue & expand on the success of ServerReady
 - SystemReady SR for servers
 - SystemReady ES for IoT/edge segments (non-server HW)
- SystemReady ES Provides a path for certification
 - ES makes certification more achievable on non-server HW
 - ES requires <u>SBBR+BSA</u>, SR requires <u>SBBR+BSA+SBSA</u>
 - ES certification <u>waivers Levels 0 2</u> allowed
 - FW workarounds to hide PCIe ECAM and other BSA issues (may be possible on non-servers with limited PCIe topology)

SystemReady ES - how it's done?

- Partners contact <u>Arm SystemReady Certification</u>
 <u>Program</u>
- Partners then prepare pre-certification tests to evaluate the platform (HW and FW) readiness for certification
- Once ready, partners submit the platform HW and test results to be evaluated by Arm
- After evaluation, and addressing any FW issues, Arm issues Certification, along with any necessary Waivers, and publishes to <u>Arm SystemReady ES</u> Certification List
- Details of the process and criteria are in the <u>Arm</u>
 SystemReady Requirements Specification

SystemReady ES - FW/HW evaluation

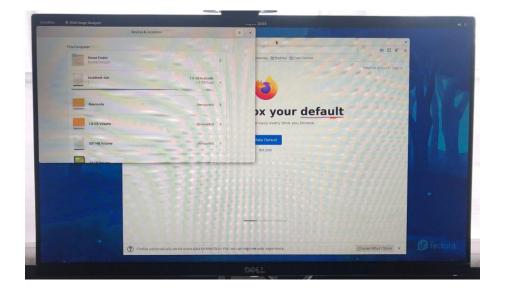
- SystemReady ES certification is based on standards specifications:
 - BSA Base System Architecture
 - BBR Base Boot Architecture (SBBR Recipe)
- Initial evaluation include:
 - Completing a "Firmware Readiness Checklist"
 - Initial run of the test suites and installation of unmodified OS distros
 - Making HW and FW available to Arm
 - Arm performs a gap-analysis to determine compliance issues that need to be addressed in the FW


SystemReady ES - Testing

- Architecture Compliance Suite (ACS)
- Arm Enterprise ACS
- Includes open-source components:
 - <u>UEFI Self Certification Test (SCT)</u>
 - Firmware Test Suite (FWTS)
 - sbsa-acs (UEFI and Linux)
 - o <u>LUVOS</u>
- Latest release: <u>Enterprise ACS 3.0</u>
- Currently still being used for SystemReady ES certification

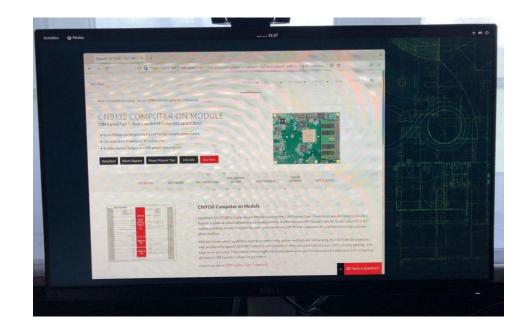
- SystemReady ES ACS
- Using re-structured ACS tailored for different SystemReady bands
 - bbr-acs(SCT and FWTS)
 - bsa-acs (UEFI and Linux)
 - <u>Linux busybox</u>
- Beta 0.9 release available

- Installation from ISO just works!
- Examples:
 - Centos 8 Stream

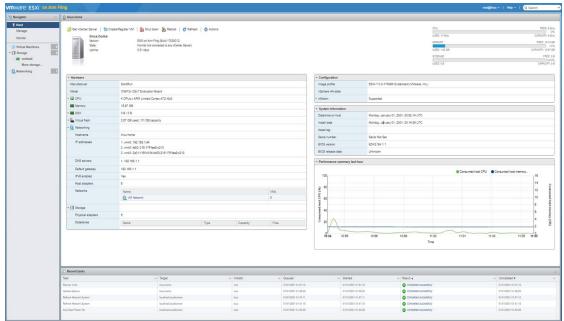


- Installation from ISO just works!
- Examples:
 - Centos 8 Stream
 - Debian 11

- Installation from ISO just works!
- Examples:
 - Centos 8 Stream
 - o Debian 11
 - o Fedora 34

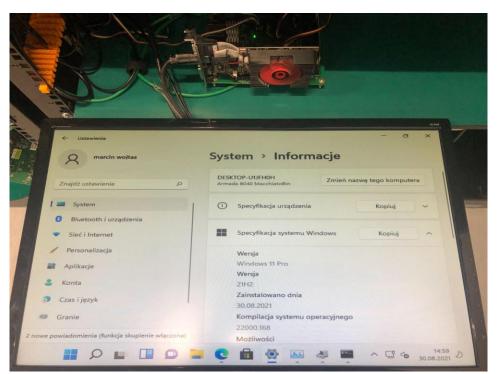


- Installation from ISO just works!
- Examples:
 - Centos 8 Stream
 - o Debian 11
 - o Fedora 34
 - Ubuntu 21.10



- Installation from ISO just works!
- Examples:
 - Centos 8 Stream
 - o Debian 11
 - o Fedora 34
 - Ubuntu 21.10
 - OpenSUSE Tumbleweed

- Installation from ISO just works!
- Examples:
 - Centos 8 Stream
 - o Debian 11
 - o Fedora 34
 - Ubuntu 21.10
 - OpenSUSE Tumbleweed
 - VMware ESXI-Arm v1.5



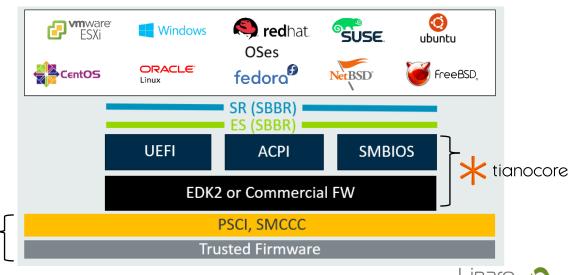
- Installation from ISO just works!
- Examples:
 - Centos 8 Stream
 - Debian 11
 - Fedora 34
 - Ubuntu 21.10
 - OpenSUSE Tumbleweed
 - VMware ESXI-Arm v1.5
 - FreeBSD & OpenBSD

- Installation from ISO just works!
- Examples:
 - Centos 8 Stream
 - Debian 11
 - Fedora 34
 - Ubuntu 21.10
 - OpenSUSE Tumbleweed
 - VMware ESXI-Arm v1.5
 - FreeBSD & OpenBSD
 - Windows 11 in a VM and natively (!)

SystemReady ES - final steps

- Results reviewed and evaluated by Arm
- Waivers approved by Arm
- Certification issued by Arm

✓ Check BSA spec pre-silicon


- Pre-silicon validation testing helps reduce most costly / problematic silicon compliance issues
- Validation include running Arm ACS test suites and EDA partners (S)BSA verification solutions

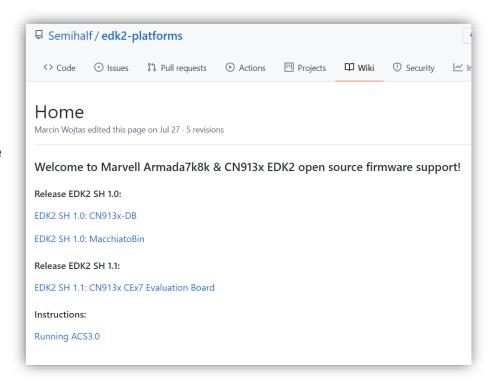
- ✓ Check BSA spec pre-silicon
- ✓ SBBR leverage open source and commonalities
- Open source FW is not required for Arm SystemReady certification
- But having open source platforms helps in building the ecosystem
- Leverage open source components and common silicon / platform code, whenever possible
- Common firmware projects: <u>tianocore.org</u> and trustedfirmware.org

- ✓ Check BSA spec pre-silicon
- ✓ SBBR leverage open source and commonalities
- ✓ Common problematic areas:
 - ✓ PCIe ECAM

- Lack of standard PCIe ECAM is the most common BSA compliance issue
- Pre-silicon validation testing is key in resolving before tape-out.
- Firmware workarounds (to fake ECAM, or make it "look OK" to the OS) are possible, but costly and have side effects
- OS platform specific quirks not desired: Existing OS distros will not "just work"
- Arm standard: <u>PCI Configuration Space Access SMC</u> <u>Interface</u> as a possible alternative

- ✓ Check BSA spec pre-silicon
- ✓ SBBR leverage open source and commonalities
- ✓ Common problematic areas:
 - ✓ PCIe ECAM
 - ✓ UART

- BSA requires either Arm Generic UART (such as PL011) or 16550 fully compliant UART for OS console and debug
- PL011 / Arm Generic UART is the safest choice
- 16550 IP in SoCs vary widely, and mostly not fully compliant to the standard: Assume OS specific drivers/quirks (e.g. <u>many "DW8250"</u> <u>variations Linux drivers</u>)
- Critical for embedded systems to provide main/only OS console (especially if there is no video console or PCle slot to add a graphics card)


- ✓ Check BSA spec pre-silicon
- ✓ SBBR leverage open source and commonalities
- ✓ Common problematic areas:
 - ✓ PCIe ECAM
 - ✓ UART
- ✓ Enable networking!

- Some OS/Hypervisor install require NIC card (e.g. ESXi-Arm)
- NICs on embedded systems are usually not supported in ACPI world (at least initially)
- For SystemReady ES certification, use PCIe or USB NIC common adapters with UEFI & OS support

Where is the firmware?

- <u>Public binaries</u> available on Semihalf GitHub wiki page
- What about the FW sources?
- Marvell CN913x/Armada7k8k all code already in upstream!
- Fast path for next certifications

