
Modern WWAN
Modem Support in
Linux
Loic Poulain <loic.poulain@linaro.org>

Introduction

A bit of history

Cellular network initially designed in 1980s to transport voice
to and from mobile phones over the air.

The cellular network is distributed over land areas called
‘cells’, each served by at least one fixed-location transceiver.
When joined together, the cells provide radio coverage over a
wide geographic area.

Over the years, and under the umbrella of the 3gpp
consortium, cellular networks evolved to offer much more
than voice...

From voice to multimedia and industry
1G - 1979 - NMT, AMPS, TACS
Analog voice - Voice is modulated to higher frequencies, relying on circuit switched technology (CS).

2G - 1991 - GSM, CDMA, +GPRS, +CDMA2000 +EDGE [max 384kbps]
Digital voice - More users, encrypted data, roaming… introduction of Data services, starting with
SMS. GPRS (2.5G) brings packet switched technology (PS), used for multimedia messages (MMS),
Tele-control, opening the doors to the world of the Internet (IP data) => WWAN

3G - 2002 - UMTS, EV-DO, +HSPA+ [max 42mbps]
Enhanced voice and introduction of video calls (CS). Improved PS data communication for internet
usages such as web browsing, tele-services, remote machine access.

4G - 2009 - LTE [max 1gbps]
PS only communication (no CS), with ‘all-IP’ networks. Allowing HD multimedia streaming, internet
gateways/routers. Voice (phone calls) using VoLTE or a Circuit-switched fallback.

5G - 2019 - 5G NR [max 10gbps]
Continuation of 4G, with higher throughputs and lower latencies, allowing massive usage, and
enabling/enhancing edge computing, wireless backhaul, autonomous machines....

Modems are complex

Source: https://www.techinsights.com

Qualcomm Snapdragon 845
Kirin 990

In modern mobile system-on-a-chips A
substantial area of the die is dedicated
to the modem IP(s).

https://www.techinsights.com

Modems are complex

MODEM
DEVICE

CPU

DSPHardware
accelerators

MODEM

Host Interface
UART/USB/PCI-EP/AMBA...

RF

RAM

ROM

Most of the cellular protocols complexity (as specified by 3gpp) is hidden to the host. The modems
integrate various components to implement and abstract this complexity. Some modems offer
additional features such as GPS/GNSS, sensors...

Some modems
run Linux as main
firmware.

The WWAN & Linux story

Transporting voice

Initially designed for phone calls, a cellular modems job was to transport voice. Voice
path was usually directly interfaced with voice hardware elements (mic, speakers…).

Cellular Modem

Modem contains necessary
audio processing components
for audio (e.g DSP).

voice

Controlling the modem - AT commands
Host was only in charge of controlling the modem, for dialling a number, quieting the speaker,
hanging up, dialling a number, quieting the speaker, hanging up, etc. Hayes developed and
published a command set to control a modem over a serial line, such as UART. This ASCII based
command set, known as “AT command set” became popular and a defacto standard among
modem manufacturers.

Cellular Modem
(Hayes-compatible)

AT commands
over serial

Host (Linux)

AT is ASCII/TEXT based
command-response protocol.

voice

tty
serial

Under Linux serial is exposed as a tty
device, configurable and accessible via
any serial communication program (e.g.
minicom).

*com

Transferring data path - PPP
When data support came to light with 2.5G (GPRS) offering WWAN capability to cellular modems,
it was mostly as an addon feature. Once A PDP context is established (to start data packet
session, provide IMSI, get an address...), PPP (Point-to-Point Protocol) can be used as a data link
protocol for transporting datagrams (IP) over the serial link (or dedicated secondary serial link).

 Data over
PPP over serial

Cellular Modem

AT commands
over serial

Host (Linux)

voice

tty
serial

tty
serial

ppp

Under Linux the ppp line discipline can
be attached to a tty to link it to the
network stack. A ppp network device is
created (e.g. ppp0).

pppd daemon can be used to initiate
the ‘data call’ (get PDP context over AT
commands, connect), and to attach
ppp to the serial.

pppdapp

ip

*com

USB WWAN devices
With the arrival of 3G and WWAN democratization, mobile network operators started to offer plans
and wireless modems that enable computers to connect to and access the internet , typically in the
form of a small USB based device (USB stick, PCMCIA card…). Replicating the legacy serial
architecture (AT commands, ppp) over USB was the obvious and simplest choice.

Data + control + audio

Cellular Modem

Host (Linux)

ppp

USB tty

No ‘Legacy’ voice path for
WWAN only modems.

kernel: usbserial: USB Serial Driver core
kernel: usbserial: USB Serial support registered for GSM modem
kernel: option 7-1:1.0: GSM modem (1-port) converter detected
kernel: usb 7-1: GSM modem (1-port) converter now attached to ttyUSB0
kernel: option 7-1:1.1: GSM modem (1-port) converter detected
kernel: usb 7-1: GSM modem (1-port) converter now attached to ttyUSB1
kernel: option 7-1:1.2: GSM modem (1-port) converter detected
kernel: usb 7-1: GSM modem (1-port) converter now attached to ttyUSB2
kernel: usbcore: registered new interface driver option

app pppdpppd

ip

tty

USB

USB WWAN devices
With the arrival of 3G and WWAN democratization, mobile network operators started to offer plans
and wireless modems that enable computers to connect to and access the internet , typically in the
form of a small USB based device (USB stick, PCMCIA card…). Replicating the legacy serial
architecture (AT commands, ppp) over USB was the obvious and simplest choice.

Cellular Modem

Host (Linux)

ppp
IP

 USB ttytty

No ‘Legacy’ voice path for
WWAN only modems.

kernel: usbserial: USB Serial Driver core
kernel: usbserial: USB Serial support registered for GSM modem
kernel: option 7-1:1.0: GSM modem (1-port) converter detected
kernel: usb 7-1: GSM modem (1-port) converter now attached to ttyUSB0
kernel: option 7-1:1.1: GSM modem (1-port) converter detected
kernel: usb 7-1: GSM modem (1-port) converter now attached to ttyUSB1
kernel: option 7-1:1.2: GSM modem (1-port) converter detected
kernel: usb 7-1: GSM modem (1-port) converter now attached to ttyUSB2
kernel: usbcore: registered new interface driver option

audio adb tty
sound

app pppdpppdadb

Each vendor usually exposes
multiple USB interfaces/class
for additional PDN context,
vendor commands, debug,
audio, firmware upgrade,
etc...

USB Data + control + audio + debug + gps...

Modern data/control protocols

Data (ethernet, IP, QMAP, MBIM...) + control (MBIM, QMI…)

Cellular Modem

Host

IP

 USB cdc-wdmnet

But serial/tty layer is not really optimized for transferring network packets, so vendors started to
directly expose wwan network interfaces instead (based on CDC-ECM, CDC_NCM or CDC-MBIM
USB classes). In the same way TEXT based AT commands protocol is quite limited and started to be
replaced (or extended) with optimized ‘binary’ control protocols (offering commands, events and
services discovery) such as MBIM (USB Mobile Broadband Interface Model), QMI (Qualcomm), etc.

QMI MBIMapp
app app

chardev

Modem interfaces fragmentation

source: https://aleksander.es

Result of this evolution is a fragmentation of
modem interfaces and protocols...

And most modems mix several of these
interfaces, ppp+wwan, AT+QMI, etc...

https://aleksander.es

ModemManager to the rescue
ModemManager daemon provides a unified high level API (DBUS)
for communicating with mobile broadband modems, regardless of
the protocol used to communicate with the actual device (Generic
AT, vendor-specific AT, QCDM, QMI, MBIM...).

It is possible to use `mmcli` command line interface to control it
from the terminal, but it is usually aimed to be controlled by a
system Network daemon (e.g. NetworkManager, connman…).

ModemManager constructs and exposes ‘modem’ instance(s)
based on the various devices that contribute to the WWAN feature
(based on udev, sysfs device hierarchy…).

ModemManager relies on various vendor plugins for handling
vendor specific device setup/commands (Huawei, Sierra, Telit,
Quectel, Nokia…).

ModemManager

libmbim libqmi

vendor

DBUS API

mmcli NetworkManager

tty, cdc_wdm, netdev, QRTR...

AT
QMIMBIM

IP config
ppp
dhcp...

nmcli
UI

settings/control

MM $ mmcli -m 1

 General | path: /org/freedesktop/ModemManager1/Modem/1
 | device id: c83446b3490da87d10b6f9d9e5a12932cf0ffff

 Hardware | manufacturer: Telit
 | model: FN980m
 | firmware revision: XXXXXXX
 | carrier config: default
 | h/w revision: 0.00
 | supported: cdma-evdo, gsm-umts, lte, 5gnr
 | current: gsm-umts, lte, 5gnr
 | equipment id: 359661109997912

 System | device: /sys/devices/pci0000:00/0000:00:14.0/usb4/4-2
 | drivers: option, qmi_wwan
 | plugin: telit
 | primary port: cdc-wdm1
 | ports: cdc-wdm1 (qmi), ttyUSB0 (ignored), ttyUSB1 (ignored),
 | ttyUSB2 (at), ttyUSB3 (at), ttyUSB4 (ignored), wwp0s20u2i2 (net)

 Status | state: failed
 | failed reason: sim-missing
 | power state: on
 | signal quality: 0% (cached)

 Modes | supported: allowed: 2g; preferred: none
[...]
 | current: allowed: any; preferred: none

 Bands | supported: utran-1, utran-3, utran-4, utran-6, utran-5, utran-8,
 | eutran-66, eutran-71, utran-19

[...]

5G modem integration story

Qualcomm PCI modems
Qualcomm modems are at the core of many vendor
modem modules (Telit, Quectel, Sierra…), especially for
new 5G products.

PCI modem variants (Mini PCI, M2 module…) are more
and more popular as integrated WWAN solution for
consumer laptop, gateways, industrial machines...

PCI usually offers better throughput, power efficiency and
lower latency than USB (for same generation), matching
new 5G requirements.

Problem: There is no Linux mainline support for
Qualcomm-based PCI modems.

Source: https://www.telit.com/mobile-broadband

source: https://www.quectel.com

https://www.telit.com/mobile-broadband
https://www.quectel.com

Modem Host Interface(MHI)
MHI is a protocol initially developed by Qualcomm
for interfacing host with PCI modems.

Data transported over shared memory using
descriptor rings and interrupts/doorbells for
synchronization (similar to virtio).

Concept of channels (logical link), states, boot
procedure, transfers, etc…

No strictly coupled to PCI, but offer an
infrastructure on top of PCI bus low level
operations (io-read / io-write / dma / interrupt).

Main interface for all recent Qualcomm modems
(SDX20, SDX24, SDX55, etc).

Host

Shared
Memory

VA->PA
Device
(Modem)

PA<-IOVAdata read/writedata read/write

Physical
memory

TX

RX

Doorbell

interrupt

PCI = MMIO WRITE

PCI = MSI

PCI = DMA

Linux & MHI
First tentative for upstreaming MHI stack in 2018, but
discontinued after few iterations.

In 2020, work has been revived by Linaro, Manivannan
Sadhasivam addressed the concerns raised by the upstream
maintainers for the initial submission and MHI core finally got
merged:
https://www.linaro.org/blog/mhi-bus-support-gets-added-to-the-linux-kernel/

MHI has been pushed as a new virtual bus, implementing the
MHI specification (device initialization and management,
transfers…).

A MHI controller implements the physical bus operations
(read, write…) and register to MHI bus (phy agnostic). the MHI
bus exposes MHI channels as MHI devices.

MHI_CORE (bus)

MHI
device

MHI
device

MHI
device

MHI
device

MHI
Controller

device

MHI
Controller

device

https://www.linaro.org/blog/mhi-bus-support-gets-added-to-the-linux-kernel/

MHI Modem support
- PCI controller

mhi_pci_generic is a standard PCI driver bound to
qualcomm PCI modems (based on hardware IDs).

Basically registering as a MHI controller, abstracting
physical bus access operations (read/write) for MHI core,
and that’s it!

MHI core initializes the MHI controller, enumerates the
channels, and exposes them as new MHI devices.

QCOM MHI modems expose multiple channels, including
control channels (QMI, MBIM) and data channel(s)
(IP_HW0).

MHI_CORE (bus)

MHI_PCI_GENERIC

mhi0

QMI IP_HW0MBIM

To PCI

Modem

pci
02:00.0

MHI Modem support
- Control channels

MHI core

mhi_pci_generic
mhi0

mhi_wwan_ctrl
(mhi_uci)

QMIMBIM

mhi0_QMImhi0_MBIM

Modem

read / write

hardware

pci
02:00.0

DIAG

mhi0_DIAG

kernel

userspace
ModemManager

libmbim libqmi

Next step was to create driver for the control
channels (mhi_wwan_ctrl/mhi_uci).

In order to facilitate compatibility with existing
userspace tools and stack, control channels are
exposed as standard character devices, in the
same way as for USB modem variants.

MHI Modem support
- Control channels

On the other side, data channel is registered
as a standard network device via mhi_net
driver.

MHI core

mhi_pci_generic
mhi0

mhi_net

IP_HW0

 Network
 (routing,
 queueing…)

mhi_hwip0

sockets

dhcp
web

brower

userspace

kernel

hardware

pci
02:00.0

tcp udp

IP

Modem

Integration with ModemManager
$ mmcli -m 0

 General | path: /org/freedesktop/ModemManager1/Modem/0
 | device id: 2ead7f1403aeda3de2a775b50c15976ccf3ba521

 Hardware | manufacturer: Telit
 | model: FN980m
 | firmware revision: XXXX
 | carrier config: default
 | h/w revision: 0.00
 | supported: cdma-evdo, gsm-umts, lte, 5gnr
 | current: gsm-umts, lte, 5gnr
 | equipment id: 359661109997912

 System | device: /sys/devices/pci0000:00/0000:00:01.2/0000:02:00.0
 | drivers: mhi_net, mhi_uci
 | plugin: generic
 | primary port: mhi0_QMI
 | ports: mhi0_QMI (qmi), mhi_hwip0 (net)

 SIM | primary sim path: /org/freedesktop/ModemManager1/SIM/0
 | sim slot paths: slot 1: /org/freedesktop/ModemManager1/SIM/0 (active)

And voilà!

$ sudo nmcli c add type gsm ifname mhi0_QMI con-name MY_CELLULAR_CON \
 gsm.apn free gsm.pin 1234 connection.autoconnect yes
Connection successfully activated

$ ping google.fr
PING google.fr (216.58.204.99) 56(84) bytes of data.
64 bytes from par10s28-in-f3.1e100.net: icmp_seq=1 ttl=116 time=51.4 ms
64 bytes from par10s28-in-f3.1e100.net: icmp_seq=2 ttl=116 time=30.7 ms

Thank you
Accelerating deployment in the Arm Ecosystem

Loic Poulain <loic.poulain@linaro.org>

