# arm

### LVC21-305: Virtualising OP-TEE with Hafnium at S-EL2

Arunachalam Ganapathy, Arm Jens Wiklander, Linaro

25 March 2021

## Agenda

- Arm SEL2 feature, SPM and FF-A
- OP-TEE SEL1 SP on Hafnium SEL2 SPMC
  - EL3 SPMD
  - □ Arm FF-A driver
  - □ OP-TEE driver FF-A support
  - OP-TEE OS: SEL2 SPMC and FF-A support
- Demo: FVP

### Arm SEL2 feature, SPM and FF-A OP-TEE SEL1 SP on Hafnium SPMC at SEL2 Demo: FVP

## Virtualization in Secure World

### Armv8.4 introduces virtualization in secure world

- New exception level S-EL2
- Key features: Stage-2 translation
  - $\circ$  VA  $\rightarrow$  IPA (Guest VM)
  - Second translation: IPA  $\rightarrow$  PA
- Isolates EL3 software from S-EL1
- Provides hardware isolation between multiple S-EL1 software components.
- Removes TOS dispatcher from EL3

### SEL2 Firmware:

- Hafnium as SPM
- Meets most of the requirements for S-EL2 software architecture
- Many of the SPM requirements are common with Hafnium design goals S-EL2
- Minimal code size that reduces attack surface
- Uses FF-A



## Firmware Framework – A profile (FF-A)

### FF-A

- Developed by Arm, contributions from Google, SiPs and Trusted OS vendors
- Prior known as SPCI (Secure Partition Client Interface)
- Leverages new architecture (S-EL2) and system features (SMMU, vGIC)

### **Terminologies:**

SPMD: Secure Partition Manager Dispatcher

SPMC: Secure Partition Manager Core

SP – Secure Partition (mostly encompasses S-EL0 and S-EL1)

S-Endpoint: SP (Spec supports various modes)

NS-Endpoint: VM in normal world or OS

**Extends SMCCC** to transport FFA messages between normal  $\leftrightarrow$  secure world

• FFA ABIs: Discovery, Message Passing, Memory Sharing



Arm SEL2 feature, SPM and FF-A OP-TEE SEL1 SP as Hafnium SPMC at SEL2 Demo: FVP

## EL3 SPD from opteed to spmd

### SPD=spmd

- Replaces legacy TOS specific dispatcher
- Handles EL2 context save/restore for world switch
- Handles PSCI calls
- Forwards FF-A calls to normal and secure world using 'eret'

### **TF-A** initialization

- BL2 loads spmc and SP images (optee).
- Uses TBBR standards

### SPMC manifest file with OP-TEE details

- Based on properties listed in FF-A spec
- Provides SPMC configuration like
  - SPMC load address, memory size, entry point
- Contains details on SP (OP-TEE) with
  - load address, vCPUs, SP memory size

```
attribute {
     spmc_id = <0x8000>;
     maj ver = \langle 0x1 \rangle;
     min ver = \langle 0x0 \rangle;
     exec state = \langle 0x0 \rangle;
     load address = \langle 0x0 0x6000000 \rangle;
     entrypoint = <0x0 0x6000000>;
     binary_size = <0x80000>;
};
hypervisor {
     compatible = "hafnium, hafnium";
     vm1 {
          is ffa partition;
          debug name = "op-tee";
          load_address = <0x6280000>;
          vcpu count = \langle 8 \rangle;
          mem size = <30932992>;
    };
};
```

compatible = "arm,ffa-core-manifest-1.0";

SPMC Manifest file entries

## Arm FF-A driver in Linux

### Arm FF-A driver

- Provides interface for all client drivers that uses FF-A
- Bus model: Creates FFA device to communicate with secure partitions.
- Uses SMCCC as transport (SMC/HVC)

### Initialization

- Creates logical bus arm\_ffa
- Probes devices (FF-A SPs) based on UUID in device tree
- Sets up RXTX mapping

### FFA ops

- Direct message send / receive
- Memory share
- Memory reclaim



## **OP-TEE** driver FF-A adoption

### **FF-A Transport adoption**

- Replaces OP-TEE SMCs with FF-A calls
- OP-TEE client ffa ops, OP-TEE supplicant ffa ops
- OP-TEE core ffa ops(rpc/msg)

### **OP-TEE driver init**

- Init optee\_ffa\_probe
  - called from ffa driver
  - fetches ffa\_ops for ffa\_device
  - FFA\_VERSION compatible
  - OPTEE\_FFA\_EXCHANGE\_CAPABILITIES
- DT bindings has details on OP-TEE UUID

```
ffa {
    compatible = "arm,ffa-1.0";
    conduit = "smc";
        optee {
            compatible = "arm,ffa-1.0-partition";
            uuid = "486178e0-e7f8-11e3-bc5e-0002a5d5c51b";
    };
};
```



## **OP-TEE** driver FF-A calls

### **OP-TEE FF-A blocking calls**

- Used in init code path
- > OPTEE\_FFA\_GET\_API\_VERSION
- > OPTEE\_FFA\_GET\_OS\_VERSION
- > OPTEE\_FFA\_EXCHANGE\_CAPABILITIES

### **OP-TEE FF-A yielding calls**

- Invokes OP-TEE in secure world for TEEC commands
- Registers/Unregisters memory with TEE
- Resumes calls that needs retry (FFA\_BUSY)
- > OPTEE\_FFA\_YIELDING\_CALL\_WITH\_ARG
- > OPTEE\_FFA\_YIELDING\_CALL\_UNREGISTER\_SHM
- ➢ OPTEE\_FFA\_YIELDING\_CALL\_RESUME

#### **OP-TEE FF-A RPC commands**

- Returned from secure world as part of response to direct message
- > OPTEE\_FFA\_YIELDING\_CALL\_RETURN\_DONE
- > OPTEE\_FFA\_YIELDING\_CALL\_RETURN\_ALLOC\_KERN\_SHM
- > OPTEE\_FFA\_YIELDING\_CALL\_RETURN\_ALLOC\_SUPPL\_SHM
- > OPTEE\_FFA\_YIELDING\_CALL\_RETURN\_FREE\_KERN\_SHM
- > OPTEE\_FFA\_YIELDING\_CALL\_RETURN\_FREE\_SUPPL\_SHM
- > OPTEE\_FFA\_YIELDING\_CALL\_RETURN\_RPC\_CMD
- > OPTEE\_FFA\_YIELDING\_CALL\_RETURN\_INTERRUPT

## **OP-TEE FF-A calls to FF-A ABIs**



## **OP-TEE OS FF-A support**

### **FF-A Support**

- Supports both S-EL1 SPMC or S-EL2 SPMC configs, that is, with or without a hypervisor at S-EL2
- Enabled by configuring OP-TEE with CFG\_CORE\_SEL1\_SPMC=y or CFG\_CORE\_SEL2\_SPMC=y

#### Boot

- Primary CPU boots as usual by starting from the entry point
- Primary CPU informs the SPM of the entry point of the secondary CPUs with PSCI\_CPU\_ON
  - This is an interim solution until fully covered by the specification
- Secondary CPUs starts from the indicated entrypoint

```
/* file entry.S */
/* Primary entry point */
FUNC start,:
. . .
END FUNC start
. . .
/* Secondary entry point */
FUNC cpu on handler , :
. . .
END FUNC cpu on handler
```

## OP-TEE OS FF-A message wait loop

### Exit messages

- Booting of a CPU is finished with a FFA\_MSG\_WAIT
- A Remote Procedure Call, RPC, is initiated with a FFA\_MSG\_SEND\_DIRECT\_RESP\_32
- FFA\_SUCCESS\_32, FFA\_ERROR etc as responses to other requests

### All these messages are sent from the main wait loop

- Execution is resumed at the next instruction as if the message returned
- All exit and re-entry is performed in this loop
  - Invoke return
  - RPC
  - Non-secure interrupt delivery, which also is a kind of RPC
- Re-entry may occur on a different CPU

.ffa\_msg\_loop: hvc #0 /\* Store parameters on stack \*/ ... /\* parse and handle message \*/ bl thread\_spmc\_msg\_recv /\* Load parameters from stack \*/ ...

b .ffa\_msg\_loop

## **OP-TEE OS - Messages**

- Architected messages are run to completion
- A yielding behaviour is built on top of SEND\_DIRECT\_REQ and SEND\_DIRECT\_RESP
- A call can return early to request a RPC either a service or to deliver a non-secure interrupt
- The value in register w3 of SEND\_DIRECT\_RESP tells the kind of return
  - CALL\_RETURN\_DONE
  - CALL\_RETURN\_RPC\_CMD
  - CALL\_RETURN\_INTERRUPT
- The value in register w3 of SEND\_DIRECT\_REQ tells the kind of yielding request
  - $\circ \quad \mathsf{CALL\_WITH\_ARG}$
  - CALL\_RESUME



## **OP-TEE OS S-EL2 SPMC - Memory sharing**

### Normal world -> Secure world memory sharing

- Initiated with a FFA\_MEM\_SHARE from normal world
- Caller gets a global handle or a cookie

### Memory retrieval

- OP-TEE is called via a normal CALL\_WITH\_ARG carrying the cookie of the memory to share
- OP-TEE completes the transaction with a FFA\_MEM\_RETRIEVE\_REQ\_64
- The memory can now be mapped in OP-TEE

### Memory relinquish

- Normal world calls OPTEE\_FFA\_UNREGISTER\_SHM
- If the memory is not actively used OP-TEE does a FFA\_MEM\_RELINQUISH
- Back in normal world a FFA\_MEM\_RECLAIM is performed



Arm SEL2 feature, SPM and FF-A OP-TEE SEL1 SP with SPMC at SEL2 **Demo: FVP** 

## Demo on FVP

### FVP with S-EL2 Feature

- OP-TEE as SEL1 SP, Hafnium as SEL2 SPMC
- Linux kernel 5.11 with FFA driver and optee driver with FFA\_TRANSPORT support
- Hafnium and TF-A version 2.4
- OP-TEE (OS/client/tests) version 3.11
- Many patches are Work in progress.

|            |   |   |  |  |  |  | * Thank You         |
|------------|---|---|--|--|--|--|---------------------|
| +          | + | + |  |  |  |  | Бracias             |
|            |   |   |  |  |  |  | 谢谢                  |
|            |   |   |  |  |  |  | ありがとう               |
|            |   |   |  |  |  |  | . Asante            |
|            |   |   |  |  |  |  | Merci               |
|            |   |   |  |  |  |  | 감사합니다               |
|            |   |   |  |  |  |  | धन्यवाद             |
|            |   |   |  |  |  |  | <sup>*</sup> Kiitos |
|            |   |   |  |  |  |  | شکرًا               |
|            |   |   |  |  |  |  | ধন্যবাদ             |
| © 2021 Arm |   |   |  |  |  |  | תודה ָ ָ            |