
Integration Arm SPE
in Perf for Memory
Profiling
Leo Yan
Linaro Support and Solutions Engineering

Introduction
Arm Statistical Profiling Extensions (SPE) is
defined as part of Armv8-a architecture
(starts from v8.2), which provides hardware
based statistical sampling for CPUs.

SPE records operations (memory, exception,
SVE, etc) and gathers associated information
for the operation, like PC value, data address,
event type, timestamp, etc. To avoid
prominent overload caused by tracing, SPE
uses statistical approach (e.g. random
interval) and filter (like latency).

This session gives introduction for Linux
supports Arm SPE with Perf tool.

Using Arm SPE with perf tool

User space

Kernel

Perf

Events

PMU Ops

Arm SPE

AUX buffer

Trace data

Trace data

…...

perf record -e arm_spe_0// test_prog

perf.data

Interrupts

Agenda
● Why we need Arm SPE?
● Arm SPE hardware mechanism
● Integration Arm SPE with perf

What is missed from the standard PMU events?
If profile with the PMU events
cache-references or cache-misses, the
developer can get to know which code
piece is the hotspot for memory accessing,
but still has no idea which memory region
accessing causes performance issue.

Arm PMU events doesn’t provide any info
for the memory accessing affiliated info,
like cache level, remote accessing, TLB, etc,
so developers have no chance to optimize
memory accessing.

The developer can easily
get to know which code
piece is the hotspot, but
has no idea for what’s
the behaviour for memory
operations.

How to profile memory on x86?
ls /sys/devices/cpu/events/mem*
/sys/devices/cpu/events/mem-loads /sys/devices/cpu/events/mem-stores

perf mem record -t load,store -- false_sharing.exe 2
949 mticks, reader_thd (thread 3), on node 0 (cpu 2).
991 mticks, reader_thd (thread 2), on node 0 (cpu 1).
1111 mticks, lock_th (thread 1), on node 0 (cpu 3).
1120 mticks, lock_th (thread 0), on node 0 (cpu 2).
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.763 MB perf.data (10645 samples)]

perf mem report

But memory events are not
supported by Arm CPUs. So
this is one reason we want to
enable Arm SPE for memory
profiling on Arm platforms.

Agenda
● Why we need Arm SPE?
● Arm SPE hardware mechanism
● Integration Arm SPE with perf

Four stages hardware tracing in Arm SPE

Sample
population

Sample
is taken Filter Sample

record

Exception
level

Interval
PC

Event

Timings

Data address

Operation

Type of
operation

Event

Latency

Packet

Packet

Packet

…...

Arm SPE Packets
Packet Packet Packet …...

$./perf report -D -i perf.data

[...]

. 00000148: b0 30 bb 3d 0a ec b8 ff c0 PC 0xffb8ec0a3dbb30 el2 ns=1
. 00000151: 99 06 00 LAT 6 ISSUE
. 00000154: 98 76 00 LAT 118 TOT
. 00000157: 52 1e 06 EV RETIRED L1D-ACCESS L1D-REFILL TLB-ACCESS LLC-REFILL REMOTE-ACCESS
. 0000015a: 49 00 LD GP-REG
. 0000015c: b2 e0 a1 b4 c4 27 20 ff 00 VA 0xff2027c4b4a1e0
. 00000165: 9a 01 00 LAT 1 XLAT
. 00000168: 9e 6f 00 LAT 111
. 0000016b: 00 PAD
. 0000016c: 65 0f 33 00 00 CONTEXT 0x330f el2
. 00000171: 00 00 00 00 00 00 PAD
. 00000177: 71 09 a9 e4 75 50 00 00 00 TS 345575303433

[...]

Address packet

Counter packet

Event packet
Operation type packet

Context packet

Timestamp packet

Padding

Data source packet: implementation dependent,
which is missed in this example.

?

Agenda
● Why we need Arm SPE?
● Arm SPE hardware mechanism
● Integration Arm SPE with perf

Enabling Perf memory events for Arm SPE
File tools/perf/arch/arm64/util/mem-events.c:

static struct perf_mem_event perf_mem_events[PERF_MEM_EVENTS__MAX] = {

 E("spe-load", "arm_spe_0/ts_enable=1,load_filter=1,store_filter=0,min_latency=%u/", "arm_spe_0"),

 E("spe-store", "arm_spe_0/ts_enable=1,load_filter=0,store_filter=1/", "arm_spe_0"),

 E("spe-ldst", "arm_spe_0/ts_enable=1,load_filter=1,store_filter=1,min_latency=%u/", "arm_spe_0"),

};

perf mem record -t -- false_sharing.exe 2

perf mem record -t -- false_sharing.exe 2

perf mem record -t -- false_sharing.exe 2

perf mem record -- false_sharing.exe 2 // This command is equivalent to ‘-t load,store’

load

load,store

store

Synthesization memory samples

header ...
SPE

trace data
...

perf.data with SPE trace data

packet
packet

…..
packet

perf mem report

ID

PID

data_src

Synthesize memory samples

addr

phys_addr

packet

Decoding

Synthesization data source field
Set operation type

Set memory hierarchy level

Set cache hit or miss

Set remote access

Set TLB hit or miss

“perf mem report” with memory attributions

The “memory access”
field shows the
operation attribution,
like the cache level,
remote access, etc.

The “Pid” field shows
which threads
contribute significant
workload for memory
operations.

Data symbols shows which
data structure is accessed, it’s
directive for reviewing global
structures with symbols.

Let’s move! - “perf c2c” with HITM tags on x86
 # perf c2c record -- false_sharing.exe 2
 # perf c2c report

If the hardware memory event supports HITM tags, it’s
straightforward to locate which cache line is accessed
frequently with its modified copy.

Press ‘d’ to display cache
line details.

In the detailed cache line view, it shows which source lines
access the same cache line, and what’s the workloads is
caused by HITM or store references.

 Shared Cache Line Distribution Pareto Table

 Shared Data Cache Line Table

“perf c2c” with Arm SPE
 # perf c2c record -- false_sharing.exe 2
 # perf c2c report

? Arm SPE doesn’t support HITM!

Experiment: “perf c2c” with option “-d all”
 # perf c2c report -d all --coalesce tid,pid,iaddr,dso

 Shared Data Cache Line Table

Experiment: “perf c2c” with option “-d all” - cont.
 # perf c2c report -d all --coalesce tid,pid,iaddr,dso

 Shared Cache Line Distribution Pareto Table

For the store samples, since Arm SPE doesn’t give out any
memory hierarchy information, like L1 hit/miss or LLC
hit/miss, thus the cache line distribution doesn’t show any
statistics for store operations.

Recap
● Arm SPE has been enabled with perf tool for below sub commands

○ perf record / perf report / perf script
○ perf mem record / perf mem report

● Arm SPE is found the memory hierarchy info is missed for store ops
○ perf c2c has not yet supported for Arm SPE on the mainline kernel
○ https://lore.kernel.org/patchwork/cover/1353064/

Only partial patches have been merged for “perf c2c” refactoring; the patches for
extension display option “all” are left out.

● Arm SPE PID tracing can only support the root namespace
○ If using the CONTEXTIDR_EL1/EL2 for PID tracing, it only can support tracing PID in the

root namespace and it’s possible to leak info for non-root namespace tracing;
○ So far only support PID tracing for root namespace.
○ https://lore.kernel.org/patchwork/patch/1367664/

https://lore.kernel.org/patchwork/cover/1353064/
https://lore.kernel.org/patchwork/patch/1367664/

Acknowledgement
Al Grant (Arm)
Haojian Zhuang (Linaro)
James Clark (Arm)
Michael Williams (Arm)

Thank you
Accelerating deployment in the Arm Ecosystem

Leo Yan <leo.yan@linaro.org>

