
VI R T U A L     SPRING 2021



2

SPEAKER

Bhupesh Sharma

Linaro

<bhupesh.sharma@linaro.org>

Twitter: @bhupesh_sharma

Large Virtual Address support 
(52-bit) in ARM64 kernel



3

$whoami
• Part of Linaro Landing team.

• Been hacking on boot loaders &
kernel since past 15 years.

• Contribute to:
• Linux,

• EFI/u-boot bootloader, and

• User-space utilities like:

• kexec-tools, and

• makedumpfile.

• Co-maintain crash-utility tool



4

Outline

● Large VA support for arm64
– What?
– How?

● 52-bit VA kernel support - arm64
● Flipping the arm64 kernel memory layout
● Impact on user-space applications
● 52-bit userspace VA
● How to test 52-bit VA support
● Next Steps



5

Large VA support for arm64 – What?
● 64-bit hardware     can address very large address space.

– Upto 16 EiBs (16 × 10246 = 264 = 18,446,744,073,709,551,616 bytes)

– Approx 18.4 exabytes of memory.
● Servers available with    64 TiB (& upwards) of memory.

–        Use-cases     requiring     addressing spaces > 2^48 bytes.

● Limitations

– Not all instruction sets, and

– Not all processors,

● support a full 64-bit virtual or physical address space.



6

● x86_64

– Supports 5-level page tables in both Hardware & Software.

– Allows addressing address space = 2^57 bytes.

– Bumps limits to

●  → 128 PiB of virtual address space,
●  → 4 PiB of physical address space.

Large VA support for arm64 – What?

● arm64

– Introduces 2 new architecture extensions

● 52-bit addressing extensions
– ARMv8.2 LVA, and
– ARMv8.2 LPA

– Allows addressing

●  → 4 PiB of virtual address space,
●  → 4 PiB of physical address space.

Reference: x86 Ice Lake processor documentation  & 
Armv8-A architecture evolution document from ARM

https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://lwn.net/Articles/716916/
https://en.wikipedia.org/wiki/Ice_Lake_(microprocessor)
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-a-architecture-evolution


7

Large VA support for arm64 – How?
● ARMv8.2 LVA

– Supports larger VA space
– Each translation table base register of up to 52 bits

● when using the 64KB translation granule.

● ARMv8.2 LPA
– Allows larger intermediate physical address (IPA), and
– PA space of up to 52 bits when using the 64KB translation granule.
– Allows a level 1 block size where the block covers a 4TB address range for the 

64KB translation granule if the implementation support 52 bits of PA.

NOTE: These features are supported in AArch64 state only.
● Cortex-A processors with ARMv8.2 extension support:

– Cortex A55 
– Cortex A75 
– Cortex A76

Hardware 

Support

Reference : ARMv-8 Architecture Reference Manual from ARM

https://developer.arm.com/documentation/ddi0487/fc/


8

Large VA support for arm64 – How?
● Translating a virtual address to a physical 

address
Hardware 

Support

Virtual Address 
from core

Reference : Memory management guide from ARM

Physical Address

https://developer.arm.com/architectures/learn-the-architecture/memory-management/single-page


9

Large VA support for arm64 – How?

● arm64 Linux uses:

– 4KB page size
● 39-bit (512GB) virtual addresses       3 translation tables levels
● 48-bit (256TB) virtual addresses        4 translation tables levels.

Software 

Support

Reference : 
Documentation/
arm64/memory.
rst

https://www.kernel.org/doc/Documentation/arm64/memory.rst
https://www.kernel.org/doc/Documentation/arm64/memory.rst
https://www.kernel.org/doc/Documentation/arm64/memory.rst


10

Large VA support for arm64 – How?
● arm64 Linux uses:

– 64KB page size
● 42-bit (4TB) virtual addresses      2 translation tables levels,

– but the memory layout is the same.
● 48-bit (256TB) virtual addresses      3 translation tables levels

● 52-bit (4PiB) virtual addresses      3 translation tables levels with ARMv8.2 extension

– expands number of descriptors in the first level of translation.

Software 

Support

Reference : 
Documentation/a
rm64/memory.rs
t

https://www.kernel.org/doc/Documentation/arm64/memory.rst
https://www.kernel.org/doc/Documentation/arm64/memory.rst
https://www.kernel.org/doc/Documentation/arm64/memory.rst


11

Large VA support for arm64 – How?
● A sample arm64 translation table walk

Reference : ARMv8-A Address Translation from ARM

https://documentation-service.arm.com/static/5efa1d23dbdee951c1ccdec5?token=#:~:text=Armv8%2DA%20uses%20a%20Virtual,Memory%20Management%20Unit%20(MMU).


12

● Design problem from a software support p-o-v

– Older arm64 CPUs which don’t support ARMv8.2 extensions.

– New / Upcoming arm64 CPUs which support ARMv8.2 extensions.
● Selected design approach

– Have a single kernel binary
● At early boot time check if the ARMv8.2 hardware feature is present or not.

52-bit VA kernel support - arm64

Boot

48-bit VA

52-bit VA

ARM
v8.2
H/W

Yes

No

Ampere eMAG
workstation

Fujitsu fx700

Early Boot

Reference : 
Documentation/arm64/memory.rst

https://www.kernel.org/doc/Documentation/arm64/memory.rst


13

● Single kernel binary for both 48-bit and 52-bit VA spaces.

● VMEMMAP constraints

– must be sized large enough for 52-bit VAs, and

– must be sized large enough to accommodate a fixed 
PAGE_OFFSET.

● VA bits related variables used by kernel code:

52-bit VA kernel support - arm64

* vabits_actual

Reference : Documentation/arm64/memory.rst

https://www.kernel.org/doc/Documentation/arm64/memory.rst


14

Direct Linear Map is in 
Higher Half of the VA space.

Flipping the kernel memory layout - arm64

● kernel text addresses is kept  
constant, even for 48 to 52-bits 
migration.

● We need to flip the VA space.

Original kernel
memory map

 Flipped kernel
memory map

Reference : Documentation/arm64/memory.rst

https://www.kernel.org/doc/Documentation/arm64/memory.rst


15

● User-space applications impacted due to flipped kernel memory 
layout

– used to debug running / live kernels,

– to analyze  vmcore dumps.

● for example: kexec-tools, makedumpfile & crash-utility.

Impact on user-space applications - arm64

● Debugging applications need to perform a va_to_pa() conversion

– Walk the translation table(s) for determining the physical address

● These applications are broken upstream currently.

● Have proposed fixes for affected applications

– some have been accepted upstream,

– others are still pending
● kexec-tools fix

https://github.com/horms/kexec-tools/commits/master
https://github.com/makedumpfile/makedumpfile
https://github.com/crash-utility/crash
https://www.spinics.net/lists/kexec/msg25802.html


16

●                                                  What happens to other existing applications?

● To maintain backward compatibility

– kernel will, by default, return virtual addresses to userspace from a 48-bit range.

52-bit userspace VA - arm64 

maybe_high_address = mmap(~0UL, size, prot, flags,...);   

● Opt-in model for willing user-space application(s)

– Hint parameter is passed to mmap() calls to receive addresses in 52-bit range.

● How to build kernel which returns addresses in 52-bit range?

– Enable CONFIG options:

● CONFIG_EXPERT && CONFIG_ARM64_FORCE_52BIT

NOTE: Only intended for debugging + should not be used in production.



17

● What if I have no arm64 hardware ?

● Use qemu

How to test 52-bit VA support

$ virt-builder --arch aarch64 --root-password password:fedora fedora-30

● Use ARMv8 fast model simulator for some quick checks

$ qemu-system-aarch64 -no-user-config -nodefaults -display none -m 2048 -cpu cortex-a57 -machine virt -smp 4 -
bios /usr/share/edk2.git/aarch64/QEMU_EFI.fd -device virtio-scsi-device,id=scsi  -drive file=fedora-
30.img,format=raw,if=none,id=hd0 -device scsi-hd,drive=hd0  -netdev user,id=usernet -device virtio-net-
device,netdev=usernet -boot efi -serial mon:stdio

Reference: Fedora AArch64 WiKi

https://www.qemu.org/download/
https://developer.arm.com/tools-and-software/simulation-models/fast-models
https://fedoraproject.org/wiki/Architectures/AArch64/Booting_a_QEMU_image


18

● Fix broken userspace applications – WIP.

● Create awareness about the flipped kernel address map.

● JIT and other applications need to made aware about the mmap() 
hint parameter and how they can receive addresses in 52-bit range.

● Ard Biesheuvel has posted a patchset to extend the Linear range for 
52-bit configurations:
– https://lore.kernel.org/linux-arm-kernel/20201008153602.9467-3-ardb@kernel.org/

● Test upstream kernel on both old CPUs (48-bit VA) and new CPUs  
with 52-bit VA)

– In absence of a real 52-bit HW, you can use ARMv8 fast model 
simulator for some quick checks.

Next Steps

https://lore.kernel.org/linux-arm-kernel/20201008153602.9467-3-ardb@kernel.org/
https://developer.arm.com/tools-and-software/simulation-models/fast-models


19

Slides can be found on github

Email: <bhupesh.sharma@linaro.org>
Twitter: @bhupesh_sharma

The talk is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

https://github.com/bhupesh-sharma/talks/blob/master/linaro-connect-2021/linaro-connect-2021-arm64-large-address-space-support.pdf


Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

