LVC21-209: 96Boards, Drones & PX4

Sahaj Sarup
Applications Engineer, Linaro-96Boards
Technologies:

- Boards
- PX4 Autopilot
Overview:

● Purpose of this project:
 ○ Expand the 96Boards Drone ecosystem now under the 96Board Auto Edition
 ■ Improve upon our previous attempt with the Aerocore2
 ○ Offload compute heavy tasks like live mapping and autonomous navigation from the drone controller to an AP+Accel Arm Platform
 ■ Targeting PX4 FMUv5x as our Drone Control platform
 ○ Exploring Use Cases for a heterogeneous Drone control and compute platform
 ■ Realtime 3D Mapping for Search and Rescue.
 ■ Photogrammetry
 ■ Live Terrain Point Cloud
 ■ Extending the platform to terrestrial and aquatic environments

● Target Audience:
 ○ People interested in expanding the horizon of on-board drone compute capabilities.
What is PX4?

- PX4 is an open source flight control software for drones and other unmanned vehicles.

- Provides a flexible set of tools for drone developers to share technologies to create tailored solutions for drone applications.

- Provides a standard to deliver drone hardware support and software stack, allowing an ecosystem to build and maintain hardware and software in a scalable way.
Meet the PX4 FMU v5x

● CPU:
 ○ Main: STM32F765
 ■ 32 Bit Arm® Cortex®-M7 @ 216MHz
 ■ 2MB memory - 512KB RAM
 ○ IO Processor: STM32F100
 ■ 32 Bit Arm® Cortex®-M3 @ 24MHz
 ■ 8KB SRAM

● On-board sensors
 ○ Accel/Gyro: ICM-20602
 ○ Accel/Gyro: BMI088
 ○ Mag: IST8310
 ○ Barometer: MS5611
 ○ ... and more
Initiative Overview

• **Basic Goal:**
 ○ Interface Between 96Boards and PX4 SoM/FMU ecosystem
 ■ Designing and manufacturing development platforms that:
 ● Allow the 96Boards and PX4 hardware to communicate with each other
 ● Explore both 96Boards CE and SOM platforms
 ● Has multiple camera and sensor interfaces.
 ○ Expose as many I/O as possible between the two modules, even some unconventional ones
 ■ For example:
 ● On-PCB Ethernet
 ● On-PCM CAN over SPI

• **Extended Goals**
 ○ Optimise firmware and apps for such a compute platform.
Final Design Decisions:

Tackling two form factors:

- **96Boards CE Mezzanine:**
 - Compatible with Medium Drones:
 - Size: 102mm x 62mm
 - Built to cost (TBD)
 - Limited Interface
 - Compatible with 96Boards CE spec

- **96Boards SoM Baseboard:**
 - Compatible with Large Drones
 - Size: 102mm x 70.5mm
 - Made with hexacopters in mind
 - Built to be feature rich
 - All possible interfaces exposed between SOM and FMU
 - Compatible with 96Boards SoM
2 Module Connections Graph

96Boards FMU v5x
Mezzanine
96Boards SOM FMU v5x Base-Board
Application Ideas:

- High precision Aerial 3D Mapping and Photogrammetry
- Advanced Image detection and tracking
- Enhanced Autonomous flight and Collision avoidance
- Precision Agriculture Applications
- First Responders and Search & Rescue
- Environmental Monitoring
Resources

- 96Boards: https://www.96boards.org/
- PX4: https://px4.io/
- PX4 V5X and other standards: https://pixhawk.org/standards/
- Gumstix: https://www.gumstix.com/
Thank you

Accelerating deployment in the Arm Ecosystem