Android Automotive OS

Guru Nagarajan, March 25, 2021
Agenda

● Android Automotive OS Platform
● Virtualization
● LTS & Security
● Performance & Reliability
The **Android Operating System**, optimized and extended into a built-in platform for automotive infotainment systems

Rich set of developer tools and SDK to enable application development

Multi-layer Security to protect the user

Android Automotive OS | OS for Automotive Infotainment

<table>
<thead>
<tr>
<th>Android</th>
<th>Android Automotive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td>Car dialer, Car media, Car messaging, Car notification, Car system bar, HVAC, Radio</td>
</tr>
<tr>
<td>Android Framework</td>
<td>Audio policy API, Car sensors, HVAC manager, Global voice trigger API, Multi-User, Multi-Display, Cluster</td>
</tr>
<tr>
<td>Android System Services</td>
<td>Audio focus, Bluetooth stack, Car service, Car UI mode, Vehicle network service, Watchdogs</td>
</tr>
<tr>
<td>Connectivity</td>
<td>Bluetooth - Profiles, Browsable Media Sources, Cover Art, MMS, Wifi - Dynamic Wifi Interface</td>
</tr>
<tr>
<td>System Health & Telemetry</td>
<td>CAN interface, Deep sleep, Multi-profile USB host, Rear-view camera</td>
</tr>
<tr>
<td>HAL</td>
<td>Extended View System / Camera HAL, Vehicle HAL</td>
</tr>
<tr>
<td>Linux Kernel</td>
<td>CAN interface, Low Power, Rear-view camera, Android Common Kernel</td>
</tr>
</tbody>
</table>
Android Automotive OS | Overview of Features

Android P
- Basic rotary support
- Multi stream audio routing
- Multiple IP network support
- Bluetooth improvements
- EV API
- ADAS/Maps data integration
- Driving state & UX Restrictions
- Suspend to RAM
- Flash wear management

And more...

Android 10 (Q)
- Multi-display capability
- Multi-zone audio
- Multi-user support
- Themeable system apps
- Updated system UI
- Remote SIM (SMS via BT)
- Identity mgmt via trusted device
- Multiple UX restriction configs
- Garage mode integration
- Passenger Mode API
- Improvements to VHAL, user media mgmt
- Watchdogs & Reliability

And more...

Android 11 (R)
- Multi-zone Audio input, Per user Audio Zone, Multi-display
- Early Camera, Surround View
- CVML framework to support execution across discrete HW, Virt env
- Trusted Execution Support
- VirtIO based subsystems
- Metrics
- Vehicle Integration to abstract vehicle bus (ex: CAN)
- Cover Art, MMS (Bluetooth)

And more...

Current best assessment of plans. It is possible that the final list of delivered features is different than what is listed here as planning and development continue to unfold.
Development, Sustaining & Security

- Software in Cars have a lifetime of a decade or more
- To protect the user and ensure user experience, sustaining performance and tooling are critical.
 - Performance
 - Reliability
 - LTS
 - Security
 - Virtualization

Android Automotive OS in Cars

Linux Kernel, Android Phones
● Virtualization
● LTS & Security
● Performance & Reliability
Virtualization
Virtualization

Cockpit domain controllers: An emerging category of car infotainment hardware platform.

- Weight reduction
- Cost reduction
- Improved x-domain integration
- Improved power consumption
- Improved OTA/updates
Virtualization | Automotive Drivers

- Cockpit consolidation is a real trend: Lower BOM cost, lower vehicle weight
- Ever more powerful SoCs enable more use cases
- Some use cases are critical (for example, interrupt response guarantees, memory isolation)
- Shared hardware access imposes unique challenges (for example, which network does one Wi-Fi adapter connect to?)
Our Approach to Virtualization

● Standards based and Open Platform
 ○ VirtIO, Open standard for virtualized devices
 ■ Started in 2008, is maintained and improved by an open committee
 ■ Google is a member of the OASIS committee
 ○ Portability across implementations, Easier Updates
● Leverage virtio where possible
● Extend it as needed (for example, virtio-snd, virtio-scmi)
● HAL virtualization where it makes sense (Vehicle HAL)
● Passthrough for Android-only devices (for example, connectivity)
Virtualization Architecture

Linux host (as example)

- **Userspace**
- **Kernel**
 - **Device driver**
 - `*.ko`
- **Physical HW**

Android Automotive OS Guest

- **Userspace**
- **Kernel**
 - **HAL**
 - **VirtIO driver**
- **Hypervisor**
- **SOC**
Virtualization | VirtIO Devices

- VirtIO has origins in the cloud/desktop world
- Supports common devices such as disk (\texttt{virtio-blk}), network (\texttt{virtio-net}), and random number generators (\texttt{virtio-rng}) among others
- Multimedia device support is under active development:
 - \texttt{virtio-snd} (new standard in v1.2)
 - \texttt{virtio-gpu} (standard + extensions)
 - \texttt{virtio-video} (WiP in v1.2)
 - \texttt{virtio-scsi} (WiP in v1.2)
- Automotive use cases are a key driver for these new specifications
Virtualization | Vehicle HAL

- Android can work without direct access to vehicle bus
- Host-side runs a HAL server and communicates to Android through `vsock`
- Vehicle HAL really does two things:
 - Management of property subscriptions and overall state
 - Communication to and from vehicle
 - Discover properties configuration
 - Receiving updated property value
 - Set property value
- Only the latter needs to change for virtualization
Virtualization | GPU

- **virtio-gpu** is sufficient for many use cases
- Performance is key. SOCs can have optimized paths for guest VMs (for example, dedicated command queue). Focus on providing performance semantics, but providing a standardized protocol.
- Plan to enable vendor extensions; allow additional virtqueues to be negotiated for vendor-specific commands
Virtualization | Security

- Goal is to integrate Arm TrustZone
- Requires vendor / hypervisor support
- Planned for mid-2021
LTS & Security
LTS Background

- A Long Term Stable (LTS) kernel is a version of the upstream Linux kernel that is maintained for an extended period of time (versions selected for use with Android receive 6 years of support).
- Security and functional fixes are regularly checked in.
- Android and other major Linux distributions (e.g., Ubuntu, Debian, Red Hat) typically base their releases on a Linux LTS kernel in order to ensure updates and support for the lifetime of the product.
What happens today?

- Many security vulnerabilities that are fixed on upstream Linux are not fixed until much later on Android, putting users and the Android brand at risk.
- The Android Security team makes a best effort to identify fixes that address security vulnerabilities and to require them for Security Patch Level (SPL) compliance in the monthly security bulletins.
- However, we are limited to issues that are explicitly flagged as security vulnerabilities or that researchers bring to our attention as security vulnerabilities affecting Android.
- An analysis in 2019 showed that 92% of Linux kernel security vulnerabilities that are required for SPL compliance were already fixed in the LTS kernel at the time they were identified as security vulnerabilities.
SoC ecosystem & LTS updates

- Starting with Android 9, new device launches are required to ship with the most recent LTS release.
- SoCs update the kernel to the required LTS version to support new device launches.
- Android Common Kernels are updated regularly with the latest LTS kernel and tested/verified on all hardware and virtual platforms associated with them.
- SoC partners acknowledge the merge of the latest ACK and report any issues they encounter and are provided support by the Android kernel team.
- LTS update requirements are published in the partner security bulletin after we have confirmed with SoCs that the LTS version is merged in and tested.
Performance & Reliability
Performance

- Performance is key
- Challenges
 - User needs are evolving, new use cases are pushing the boundaries
 - Benchmarks are not always representative of real-world interactions
 - Creation of a representative use cases that can be used to evaluate our priorities are a start
- Need to prepare early for “future killer apps”, ensure headroom
Performance & Reliability | Building Blocks

- Throughput and Latency both are critical in Cars
- Power and Energy Consumption, as in mobile are critical
- Standardize on the counters, tools, and HALs

Data Sources
- Linux kernel ftrace
- Android event log
- Android Power /sys/power
- Linux /proc/vmstat
- Linux /proc/vmstat

Data Collection
- Android collection agents
- C++ Native process

Trace Output
- FTrace events
- VMS Stats
- CPU Stats
- Clock Domain Sync
- Power Stats

Android

Google
Performance & Reliability | Watchdog

- Android Automotive OS introduced a Watchdog (CarWatchdog) for ensuring reliability.
- CarWatchdog is a service that monitors system health and identifies/terminates badly behaving processes.
- Monitors I/O performance at boot time, at periodic intervals, or at a custom duration.
- CarWatchdog is different from activity lifecycle monitoring for detecting Android Application Not Responding (ANR) - native services and Android services are the clients.
- Facilities for managing restarts and process control are provided.
Thank you!