RUNNING ACCELERATED NEURAL NETWORKS USING PYTHON AND ARM NN

Pavel Macenauer
Sr. Software Engineer, NXP Semiconductors
SEPTEMBER 2020
OVERVIEW

• Introduction to Arm NN
 • About Arm NN
 • Linaro & project infrastructure
• New Python Interface in Arm NN 20.05 (PyArmNN)
 • About PyArmNN
 • SWIG
• NN Acceleration & Arm NN Backends
 • What is it?
 • Backends available
 • 3rd party backends
Introduction to Arm NN
WHAT IS ARM NN?

- A **middleware** inference engine for machine learning on the edge
 - **Single API** integrating popular high-level ML frameworks (TensorFlow, TF Lite, Caffe, ONNX – MXNet, PyTorch)
 - Connects high-level ML frameworks to compute engines, drivers, HW through **Arm NN backends**
 - Optimized for **ARM and NXP** hardware
 - Cortex-A CPUs, Mali GPUs, Ethos-N NPUs
 - i.MX8 microprocessors (Cortex-A CPUs + GPU/NPU for acceleration)

https://github.com/ARM-software/android-nn-driver
ARM NN, LINARO, RELEASES AND DEVELOPMENT

• Open source project donated mid-2018 to Linaro AI initiative (https://www.mlplatform.org/) by ARM
 - Development lead by ARM (pull requests are merged by ARM core developers)
 - Community and NXP is participating as well

• Releases on GitHub (https://github.com/ARM-software/armnn)
 - Quarterly releases (latest 20.08)
 - See also for release notes, to report bugs or start discussion

• Development and pull requests on mlplatform.org (https://review.mlplatform.org/admin/repos/ml/armnn)

• Synchronized releases with Arm Compute Library (https://github.com/ARM-software/ComputeLibrary)
PyArmNN

(Python interface to Arm NN since 20.05)
 PYARMNN

• Wrapper around the C++ interface
 - Does not implement any computational kernels
 ▪ A few convenient functions
 - Built from the Arm NN repository
 ▪ CMake or standalone scripts can be used
 - Not available on PyPi
 - Python API is very similar to C++
 - Generated using SWIG

• Contributed by the joint forces of ARM and NXP to Arm NN 20.05
 - Available on Arm NN GitHub since 20.05
 - Standalone project for older versions (19.08, 20.02) on NXP GitHub
 ▪ User must provide prebuilt Arm NN libraries and headers
 ▪ i.MX8 Yocto Linux images support 19.08 and 20.02

CMake

$ cmake .. -DBUILD_PYTHON=1

Scripts and commands

$ export SWIG_EXECUTABLE=<path_to_swig>
$ export ARMNN_INCLUDE=<path_to_armnn_include>
$ export ARMNN_LIB=<path_to_armnn_libraries>

$ python setup.py clean --all
$ python swig_generate.py -v
$ python setup.py build_ext --inplace

$ python setup.py sdist
$ python setup.py bdist_wheel

https://github.com/ARM-software/armnn/blob/branches/armnn_20_08/python/pyarmnn/README.md
https://github.com/NXPmicro/pyarmnn-release
HOW TO GENERATE A PYTHON WRAPPER USING SWIG

• What is SWIG? (http://www.swig.org/)
 - A tool connecting C/C++ with a wide range of other programming languages (Python, JavaScript, Perl, etc.)
 - It’s here for 20+ years
 - Variety of other options Boost.Python, pyrex, ctypes, pybind, etc.
 - Need to write 2 files - SWIG template and setup.py (setuptools, distutils)
 - setuptools.Extension in setup.py
 - Expose the interface in SWIG templates + memory management
 - PyArmNN requires SWIG 4 due to C++ STL support
 - May be required to install from sources (typically SWIG 3 is available in package managers)
 - SWIG_EXECUTABLE variable in the build system
Whatever Python imports are necessary
import numpy as np
import cv2
import pyarmnn as ann

Create a parser and load the model (ONNX, TF or Caffe can be used as well)
parser = ann.ITfLiteParser() # Other parsers may required additional inputs
network = parser.CreateNetworkFromBinaryFile('my_model.tflite')

Initialize options, runtime and set backends to run the model on
options = ann.CreationOptions()
rt = ann.IRuntime(options)
preferredBackends = [ann.BackendId('VsiNpu'), ann.BackendId('CpuAcc'), ann.BackendId('CpuRef')]

Load into Arm NN internal format/engine
opt_network, _ = ann.Optimize(network, preferredBackends, rt.GetDeviceSpec(), ann.OptimizerOptions())
net_id, _ = rt.LoadNetwork(opt_network)
image = ... # Load a frame, image, process using numpy, cv2, etc.

Get input tensor from the model and load it with the image
input_names = parser.GetSubgraphInputTensorNames(0)
input_binding_info = parser.GetNetworkInputBindingInfo(0, input_names[0])
input_tensors = ann.make_input_tensors([input_binding_info], [image])

Get output tensor from the model
output_names = parser.GetSubgraphOutputTensorNames(0)
output_binding_info = parser.GetNetworkOutputBindingInfo(0, output_names[0])
output_tensors = ann.make_output_tensors([output_binding_info])

rt.EnqueueWorkload(0, input_tensors, output_tensors) # Run inference
out_tensor = ann.workload_tensors_to_ndarray(output_tensors)[0][0]

“A tabby is any domestic cat with a distinctive ‘M’ shaped marking on their forehead, stripes by their eyes and across their cheeks ...”

https://en.wikipedia.org/wiki/Tabby_cat
NN Acceleration & Arm NN Backends
ARM NN BACKENDS

- An abstraction connecting layers of a neural network graph to the underlying hardware through a driver or a compute engine
 - Enables hardware acceleration on a CPU, a GPU or an NPU
 - Existing backends –
 - **ARM Compute Library - OpenCL** (Mali GPU), **NEON** (Cortex-A CPU)
 - Can support any GPU with at least OpenCL 1.1, non-uniform workgroup size ext, fp16 ext, int64 base atomics ext
 - **ARM Ethos-N backend** using Ethos-N driver
 - **Reference backend** for testing, validation and as a default fallback
 - Easy to implement a 3rd party backend
 - E.g. VsiNpu backend for NXP i.MX8 microprocessors

[Links]
https://github.com/ARM-software/ethos-n-driver-stack
https://arm-software.github.io/ComputeLibrary/v20.08/
CPU ACCELERATION USING ARM NEON

• Accelerated using Arm NEON™ backend in ARM Compute Library

• **Mobilenet v1** quantized inference (Mobilenet_V1_1.0_224)
 - Popular image classification model for mobile platforms

 - Unoptimized (reference): **77441.685 ms**
 (i.MX8MP single A53 CPU core)

 - **NEON: 93.769 ms**
 (i.MX8MP 4x A53 CPU) = 825x faster than unoptimized implementation

https://github.com/ARM-software/ComputeLibrary
https://www.tensorflow.org/lite/guide/hosted_models

• Advanced Single Instruction Multiple Data (SIMD) architecture extension for the Arm Cortex-A and Cortex-R series processors

• Targeted for audio, video processing, computer vision, deep learning, etc.
HYBRID EXECUTION

- Layers are executed using **workloads** created by individual backends
 - Depends on layer support and which layers were specified by the user
- **Multiple backends** can be used
- Done internally in **Optimize** function

VsiNpu is a custom backend for NXP i.MX8 devices
CpuAcc is the ARM Neon accelerated backend
CpuRef is the unoptimized CPU backend

```
preferredBackends = [ ann.BackendId('VsiNpu'),
                    ann.BackendId('CpuAcc'),
                    ann.BackendId('CpuRef') ]
```
3rd Party Backend

What is required to implement?

1. **Backend interface** - IWorkloadFactory, LayerSupportBase, IMemoryManager, etc.
2. **Workloads** – execute layers of a graph
3. **Unit Tests** – integrated into UnitTests binary
4. **Makefiles** (CMake)

- **Dynamic** (loaded during runtime) and **static** (compiled into Arm NN library) backends

Example directory structure

```
test
  - CMakeLists.txt
  - NpuLayerTests.cpp
  ...
workloads
  - CMakeLists.txt
  - NpuConvolution2dWorkload.hpp
  - NpuFullyConnectedWorkload.hpp
  ...
CMakeLists.txt
backend.cmake
NpuTensorHandler.cpp
NpuTensorHandler.hpp
NpuWorkloadFactory.cpp
NpuWorkloadFactory.hpp
...```
I.MX8 NPU Backend

- Delegates compute to the OpenVX™ driver (chooses GPU/NPU based on HW available)

- OpenVX™ is an open, royalty-free standard for cross-platform acceleration of computer vision applications by Khronos

- Mobilenet v1 quantized inference: **3.024 ms**
  - compared to **93.769 ms** using CpuAcc (4x A53 + NEON)

https://source.codeaurora.org/external/imx/armnn-imx/
SECURE CONNECTIONS
FOR A SMARTER WORLD