Power Management on Zephyr
Vincent Wan
Linaro Assignee - Texas Instruments
Zephyr and Power Management

- “Resource-constrained” includes constraint on power consumption
- Zephyr has an existing power management subsystem
Power management features (as of Zephyr 2.20)

System Power Management
- Sleep and deep sleep states
- PM policy
 - Residency-based default
- Power state locking
- Power state forcing

Device Power Management
- Centralized device PM
 - Active, low power, suspend, off
- Busy status indication
- Device idle power management

Bonus: Tickless Kernel

More info available in Zephyr documentation:
https://docs.zephyrproject.org/latest/reference/power_management/index.html
Power management support on CC1352R1

- ARM Cortex M4F
- Active mode: MCU @48 MHz, 2.9 mA
- Idle: 590 uA
- Standby: 0.85 µA (RTC on, 80KB RAM and CPU retention, peripherals off)
- Shutdown: 150 nA (wakeup on external events)
Implementation on CC1352R1

- Lean on Power Manager supplied by TI HAL:
 - Power_sleep()
 - For standby mode
 - Power dependencies
 - Auto on/off of peripherals and power domains depending on resources needed (reference-counting)
 - Power constraints
 - Anticipated need in TI’s RF driver
 - Power notifications
 - Ensure device is re-configured on wakeup when only system power management is used

- Use support functions as needed from DPL and DriverLib
The journey (1 of 4)

- Add RTC-based timer driver
 - Wake-up from standby mode
 - Tickless kernel
- Map sleep states to SoC’s supported power modes and implement `sys_set_power_state()`
 - Sleep 1: IDLE mode
 - Sleep 2: STANDBY mode
 - Deep Sleep 1: SHUTDOWN mode
- Initialize TI Power Manager during system initialization (SYS_INIT)
The journey (2 of 4)

- Create customized policy function
 - Residency-based
 - Only enters sleep states
 - Check any power constraints set by TI drivers
 - Schedule a k_timer to wake up slightly ahead of deadline to account for any latency
The journey (3 of 4)

- Implement power management in drivers (GPIO, UART, I2C, SPI)
 - Define list of “core devices” in subsys/power/device.c (timer and UART 0)
 - Enable all pins as wakeup source in GPIO driver
 - Implement `<driver>_pm_control()`
 - Handle low-power, suspend and off states in the same way
 - Lock sleep 2 (STANDBY mode) where appropriate
 - UART driver API is not very power-friendly. Difficult to lock out standby mode in driver when using `uart_poll_in` (Issue #23798)
 - System PM on, Device PM off: use TI Power Manager for notifications
The journey (4 of 4)

● Skipped Device Busy Indication feature
 ○ Used to indicate a device is busy
 ○ System power state locking is sufficient, and has better granularity
 ○ Busy status not being checked in Zephyr

● Tried Device Idle Power Management
 ○ Add ref count to each device, adjust count based on need, turn off when count is 0.
 ○ Does not work very well with centralized PM method (Issue #22391)
 ○ No concept of power domains
Power Measurements

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Zephyr (mA)</th>
<th>TI-RTOS (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep forever(^1) (STANDBY)</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Printing hello world once a second(^1)</td>
<td>0.012</td>
<td>0.007</td>
</tr>
<tr>
<td>SPI loopback test repeated every second</td>
<td>0.137</td>
<td>n/a</td>
</tr>
<tr>
<td>Bme280 sample using boostxl_sensors</td>
<td>0.083</td>
<td>n/a</td>
</tr>
<tr>
<td>Deep sleep forever(^1) (SHUTUTDOWN)</td>
<td>0.00019</td>
<td>0.00018</td>
</tr>
</tbody>
</table>

- Measured with stune utility from TI EnergyTraceTM in CCS 10.0
 - \(\pm 0.5\) uA nominal
 - Range: 1 uA to 100 mA
 - 256 ksp
 - Averaged over 10 sec
- Exception: deep sleep measured using a multimeter

\(^1\)With external flash powered off

Zephyr taken from Commit id: dcde0d5ed52834eeba6e5651d7ee6570078f3bd
On https://github.com/vanti/zephyr/tree/demo
EnergyTrace™ Demo

CC1352R1 LaunchPad connected to Windows PC

- *Stune*: Command line utility from TI Code Composer Studio IDE

- *EnergyPy*: Python wrappers to invoke stune.exe and xdsdfu.exe
Summary

- Zephyr provides a basic power management framework
- With help from TI Power Manager, I was able to get decent results in static scenarios
- Basic system PM and device PM support on CC13x2 merged
- Shutdown mode support pending review
- PM subsystem would benefit from more features and better integration
Thank you

Accelerating deployment in the Arm Ecosystem