LTD20-205

System Device Tree PrOJect

2020-03-25
Tomas Evensen
Stefano Stabellini
Bruce Ashfield

What is a System Device Tree?

Linaro
-li‘ IIIII

Processing System

=

d ARM Cortex™-A53

Qua ‘
Floating Point Unit

32kB 3268 Memory Geometry
I-Cache D-Cache J Management Processor
with ECC Unit

with Parity

ARM Mali™- 400 MP

2 Pixel
Processors

CCVSMMU | 1MB L2 Cache/ECC

| ol

Memory Management Unit
64KB L2 Cache

DDR4/3/3L,
LPDDR4/3,
ECC Support

Display Port

Speed

UsB 3.0
SATA3.0
PCle Gen2

PS-GTR

Block RAM General Purpose 10

High-Performance HPIO
High Density HDIO

UltraRAM
DSP

GTH
GTY

Interlaken

Ve Foatoe Configuration Gigabit Ethernet
Dual ARM Cortex™-RS , AES Decryption, CAN
Memory Protection Authentification Power : 12C
Unit and Secure Boot %?-]Rle"s‘:tr: UART
1286 TCM || 32KB I-Cache | 32KB D-Cache Clocking Us8 2.0
withECC | withECC | with ECC Trestiose Siten and Debug SP
" Quad SPI NOR
anagement NAND
SD/eMMC
Programmable Logic
Storage and Signal Processing High Speed Connectivity Video Codec

H.265/H.264

Modern SoCs are very heterogenous
. MPSoC: A53s, R5s, PMU, MicroBlazes

System Software needs a lot of HW info

. Memory allocated for each domain
. Including shared pages

. Devices assigned to each domain

. Addresses of memory and registers
. Same device can have different addresses
. Topologies (clocks, busses, ...)

Allocation and configuration is complex
. Typically done in an ad-hoc way
. Editing Device Trees and #defines
. Especially tricky for shared resources
. E.g. shared pages for OpenAMP/virtlO

Industry standards and common tools needed
. One well-defined true source for all configuration
. Common for Linux, firmware, RTOSes, etc.
. Open source tooling to manipulate configuration
. Split up allocated resources to “Execution Domains”

e | TECH DEYS

Device Trees and System Device Trees

® Device Trees (DTs) express HW information relevant to Operating Environments
0 Been used by PPC and ARM SSW to define HW that can not be dynamically discovered
O Used by uboot, Linux, Xen and increasingly being used by RTOS vendors
® Device Trees describes HW nodes and topologies
o0 Traditional Device Trees are only describing the world seen from one Address Space
e Additional system level Device Tree information is proposed
0 A System Device Tree (S-DT) describes all HW that later can be divided into different partitions
e System DT additions include two parts:

1. DeviceTree.org specification and tooling additions
m Describing multiple cpu clusters and corresponding views of their address spaces

m Enabling source-to-source translations by adding options to keep labels and comments .II

2. AMP configuration information

m Resource allocation using Execution Domains devicetree
.org

m Using the a special Device Tree section to specify AMP configuration
m Specification of shared resources, such as pages for virtlO buffers
m Intentis to align with hypervisor information (e.g. Xen DomO-less configuration)

?-I-I-

What is an “Execution Domain”?

Execution Domains and Operating Environments

FPGA
App | | App App App | | App App
L Domains RTOS Bare Metal RTOS Bare Metal
O A Domain is a separate address space, including devices — — — —
O Defined by cores clusters, Execution Levels and R5 Core 0 R5 Core 1 MicroBlaze MicroBlaze
security environments
® Core clusters — Heterogeneous cores Non-secure State Secure State
. A A A Al Ap) Ap Ap
O E.g.AB3s, R5s, PMU, MicroBlazes ELO - | il |] e
ontainer
® Execution Levels (EL) ' > Trusted Execution
EL1 L Environment (TEE)
O ELO-User space EL1-0S RUeE
O EL2 — Hypervisor EL3 - Firmware EL2 Hypervisor
® Security Environments
O TrustZone (TZ) - HW protecting resources (e.g. memory) EL3 Trusted Firmware (TF)
O Trusted Execution Environment (TEE) — SEL1
() Operating Environments (OE) r A3 ™ A3 r A3 A53
. . L . Core 0 Core 1 Core 2 Core 3
O An OE is the system SW that runs in a Domain, including:
| | Linux (including Android), Free and commercial RTOS's
PMU Fi
| | Bare metal (no OS), Hypervisors PR
| | Firmware/boot loaders — Trusted FW, PLM, PMU FW, uboot, ... | Platform Management Unit (PMU) |

?-IIII

What's the difference between System DT and DT?

The current proposal: new concepts

e Hardware description

O cpus,cluster: multiple top-level nodes to describe heterogeneous CPU clusters
O indirect-bus: a new type of bus that does not automatically map to the parent address space
O address-map: a property to express different address mappings of CPUs clusters; it can map indirect-buses

e AMP Configuration

O execution domains

Linaro

Lpesses

Hardware Description: an example

/* default cluster */

cpus {
cpu@0 {
};
cpu@l {
};

};

/* additional R5 cluster */
cpus_r5: cpus-cluster@0 {
compatible = "cpus,cluster"”;
/* specifies address mappings */
address-map = <0xf9000000 &amba_rpu 0xf9000000 0x10000>;
cpu@0 {
};
cpu@l {
};
};

amba_rpu: indirect-bus@f9000000 {
compatible = "indirect-bus";
};

Linaro | " Eme™8 FpiEaiis

Lpesses

Why we have a default?

It is convenient to have an execution domain that owns everything by default
It is also very common: e.g. Linux running on a Cortex-A cluster

It turns system device tree into an addition to device tree

It makes it more natural to introduce system device tree concepts to the device
tree spec

It allows us to maintain compatibility with existing systems, i.e. Linux booting on
system device tree

How do we describe interrupts?

Interrupts Louociault cluster 2/

};
Multple clusters /* additional R5 cluster */
cpus_r5: cpus-cluster@0 {
Each cluster sees only its compatible = "cpus,cluster";
own interrupt controller /* specifies address mappings */
address-map = <0xf9000000 &amba_rpu 0xf9000000 0x10000>;
Other hardware hard- };
wired to a specific bus
can be specified the /% bus only accessible by cpus */
same way amba_apu: bus@f9000000 {
compatible = "simple-bus";
gic_a72: interrupt-controller@f9000000 {
};
};

/% bus only accessible by cpus_r5 */
amba_rpu: indirect-bus@f9000000 {

compatible = "indirect-bus";
gic_r5: interrupt-controller@f9000000 {
};

Interrupts

All devices have interrupts
routed to both interrupt
controllers

amba: bus@f1000000 {

compatible = "simple-bus";
ranges;
#interrupt-cells = <3>;
interrupt-map-pass-thru = <Oxffffffff Oxffffffff Oxffffffff>;
interrupt-map-mask = <0x0 0x0 0xO0>;
interrupt-map = <0x0 0x0 O0x0 &gic_a72 0x0 0x0 0xO0>,
<0x0 0x0 0x0 &gic_r5 0x0 0x0 0x0>;

can@ff060000 {
compatible = "x1lnx,canfd-2.0";

reg = <0x0 0Oxff060000 0x0 0x6000>;
interrupts = <0x0 0x14 O0x1>;

Linaro

Lpesses

How do we dedicate assignable resources to
CPUs clusters?

Configuration: execution domains

e An execution domain is a collection of software, firmware, and board

configurations that enable an operating system or an application to run a CPUs
cluster.

O cpus: physical CPUs where the software is running

memory: memory assigned to the domain
[]

O

Memory ranges can be shared across multiple domains, e.g. for communication
O access: devices assigned to a domain

domains {
openamp_r5 {

compatible = "openamp,domain-v1";
cpus = <&cpus_r5 0x2 0x80000000>;
memory = <0x0 Ox0 O0x0 0x8000000
0x0 0x10000000 0x0 0x1000>;
access = <&can@ff060000>;

Linaro
£

anesEes

How do we configure Bus Firewalls?

Bus Firewalls & Device Assignment

e Devices are assigned to execution domains using access
e memory + access have the information necessary to configure bus firewalls

O Memory ranges dedicated to one execution domain

O Devices dedicated to one execution domain

e |nthe example below, the bus firewall can be configured to allow access to the

following address ranges only from the Cortex-Rb5 cluster:
O 0 -0x80000000
O Oxff060000 - Oxff066000

domains {
openamp_r5 {
compatible = "openamp,domain-v1";
cpus = <&cpus_r5 0x2 0x80000000>;
memory = <0Ox0 Ox0 0x0 0x8000000>;
access = <&can@ff060000>;
}s
}s

Linaro
E

anesEes

Bus Firewalls & Priorities

e The bus firewall configuration can be derived from memory, access, and the
capability of the bus firewall
O It can be implemented as a backend to lopper

e Bus firewalls might not be able to protect everything
e \We need to set priorities for bus firewall protection
e From one execution domain point of view:

O Priorities for protecting my memory/MMIO regions from foreign accesses (most important)
O Periorities for protecting others from my memory accesses

O We might need higher granularities, to specify priorities per device, per memory range

domains {
openamp_microblaze {
compatible = "openamp,domain-v1l";
priority_self = <9>;
memory = < .. >
access = < .. >
b
b

Linart

0
pensEn

What about chosen and reserved-memory?

Chosen & Reserved-Memory

e chosen and reserved-memory are top-level nodes dedicated for configurations

e In system device tree, they are dedicated to the configuration of the default CPUs
cluster

e Other execution domains have their own chosen and reserved-memory nodes:

/* configurations for the default cluster */

chosen {

b

reserved-memory {

};

/* execution domains configuration */

domains {

openamp_r5 {

compatible = "openamp,domain-vl";
cpus = <&cpus_r5 0x2 0x80000000>;
memory = <0x0 0x0 0xO 0x8000000>;
access = <&can@ff060000>;

chosen {
bootargs = “console=ttyPs0,115200”;
b
reserved-memory {
[..]
b

}s

0
i . pensEn

Linart

What is “Lopper”?

Linaro
-li‘ IIIII

Lopper

® Lopper

O Is atool for manipulating System Device Trees
o Primary goal is to produce standard devices trees to support existing platforms/OSs
m Produces any number of outputs through plug-ins: device trees, generated code, custom, etc
O Integrates with various development workflows
O Is data driven (there is no magic!)
® A few details:

0 OpenSource, BSD-3 License
] https://github.com/OpenAMP/open-amp/wiki/System-Device-Trees#Lopper

O Written in python, using libfdt for tree manipulations
Works with dts and dtb inputs
Supports basic/simple operations (lops) and more complex python assist modules
m Depending on the task, both can be used
Flexible output is provided via python backends
Performs validation and consistency checking during output

https://github.com/OpenAMP/open-amp/wiki/System-Device-Trees

What are the components of Lopper ?

Lopper Components

Standards Based Inputs i Open Source Tools i Backends i Conformant Outputs
1 | 1
: —_ J___I
| | vilf
devicetree.org . | Lopper Lopper | lpsnElleEer
o ! PP | |
 Dindings | assists | |
* schemas : python3 : .| device > ,
* : frontend | - ___ | .| tree blob Linux
! . .
N I ——— | libdevice Jl i __________ | E
. | | T T T T T —— |
system device === | ¢ frontend | ~= dtb -> dts ', | device qev
tree E e : libfdt : l__________l\r‘ tree pipeline
I I
device / board : 00000 | :
dts : pyfdt +>:1 dtb -> ¢ Jl " | device
| at EEEEEEREEEEE LT | treeblob |4 RTOS
overlays | c | dtc: schema | L BRI\
| Sy =T
| : | validation | > firewall 3 v
o1 (Jeeierytt o §
op° : Ccpp : : drivers
! : : Bare Metal
1
: : :
| 1 |
1 1 1

Linaro
£

anesEes

How do | run Lopper to create a traditional DT ?

Generating a traditional DT (1/3)

e Inputs:

O System Device tree

O Domain node

O Lopper operations (custom, built-in, or both)
® Outputs:

O Standard Device tree

O Optional: Custom device trees

® What lopper does:
O Applies operations to the tree as specified in the lopper operations file (lops)
m If specified, Finds the specified domain node
® Applies logic based on the domain node
O Built-ins, or via python assist
O Performs built-in operations to remove non-standard elements
O Outputs the modified system device tree

m Either as a raw dump, or as a validated “pretty printed” version
m Either way, the output is standard device tree

Generating a traditional DT (2/3

o)

versal-v2.dts output/linux-r5.dts

SDT summary:

system device tree:

lops:

['lops/lop-load.dts', 'lops/lop-domain-r5.dts']

output: output/foo.dts

[INFO] :
[INFO] :
[INFO] :
[INFO] :
[INFO] :

[INFO] :
[INFO] :

[INFO] :
[INFO] :
[INFO] :

[INFO] :
[INFO] :

[DBG+] :
[DBG+] :
[INFO] :

[INFO] :

deleting node /cpus

resetting all refcounts

tracking access to node /chosen/openamp_r5
tracking access to node /chosen

tracking access to node /cpus_r5

deleting node /amba/can@ff060000
deleting node /amba/can@ff070000

deleting node /amba/pci@fcal0000
deleting node /amba/watchdog@fd4d0000
deleting node /amba/zyngmp_ipi

modify property found: /cpus_r5/::/cpus/

renaming /cpus_r5/ to cpus

outfile is: linux.dtb
output selected are: ['*']
dtb output format detected, writing .//linux.dtb

writing output dtb: .//linux.dtb

[‘system-device-tree-versal-v2.dts"']

[INFO] :
[DBG+] :
[DBG+] :
[DBG]:
[DBG]:
[DBG]:

[INFO] :

[INFO] :
[DBG+] :
[DBG+] :
[DBG+] :
[DBG+] :
[DBG+] :
[DBG+] :
[DBG+] :
[DBG+] :
[DBG+] :
[DBG+] :
[DBG+] :
[DBG+] :
[DBG+] :
[DBG+] :
[DBG+] :
[DBG+] :
[DBG+] :

—————— > processing lop:

outfile is:

linux-partial.dts

output selected are: ['amba.*']

node_copy_from_path:
node_copy_from_path:

node_copy_ from path: /amba -> /amba

/amba_apu -> /amba_

/amba_rpu -> /amba_

% lopper.py --pretty -i lops/lop-load.dts -i lops/lop-domain-r5.dts device-trees/system-device-tree-

system-device-tree-vl, lop,output

apu

rpu

dts format detected, writing .//linux-partial.dts

dts format detected,

writing output/foo.

dts

[cpus:address-map] phandle replacement of: 0x20 with amba

[cpus:address-map] phandle replacement of: 0x21 with amba_rpu

[cpus:address-map] phandle replacement of: 0x22 with memory00000000

[cpus:address-map] phandle: 0x23 not found, dropping 4 fields

[cpus:address-map] phandle replacement of: 0x24 with tcmffe90000

[interrupt-controller@f9000000:interrupt-parent] phandle replacement of: 0x5 with interrupt controllerf9000000

[smmu@fd800000:interrupt-parent]

[timer:interrupt-parent]

phandle replacement of: 0x5 with interrupt controllerf9000000
phandle replacement of: 0x5 with interrupt_controllerf9000000

[interrupt-multiplex:interrupt-map] phandle replacement of: 0x5 with interrupt_controllerf9000000

[interrupt-multiplex:interrupt-map] phandle replacement of: 0x25 with interrupt_controllerf9000000

[ethernet@ff0c0000:interrupt-parent] phandle replacement of: 0x26 with interrupt multiplex

[ethernet@ff0c0000:iommus] phandle replacement of: 0x27 with smmufd800000

[openamp_r5:
[openamp_r5:
[openamp_r5:

[openamp_r5:

cpus] phandle replacement of: 0x28 with cpus

access] phandle replacement
access] phandle replacement

access] phandle replacement

[zyngmp-power:interrupt-parent] phandle

of: 0x29 with memory_ r50
of: 0x24 with tcmffe90000
of: Oxb with ethernetff0c0000

replacement of: 0x26 with interrupt multiplex

Generating a traditional DT (3/3)

% lopper.py --pretty -i lops/lop-load.dts -i lops/lop-domain-r5.dts device-trees/system-device-tree-
versal-v2.dts output/linux-r5.dts

% cat system-device-tree-versal-d2.dts | grep { | wc -1 % cat output/linux-r5.dts | grep { | wc -1
84 41
% cat device-trees/system-device-tree-versal-v2.dts | grep -A % cat output/linux-r5.dts | grep -A 10 "cpus {"
10 "cpus {" cpus: cpus {
cpus: cpus { #address-cells = <0x1>;
#address-cells = <0x1>; #size-cells = <0x0>;
#size-cells = <0x0>; #cpus-mask-cells = <0x1>;
#cpus-mask-cells = <0x1>; compatible = "cpus,cluster";
compatible = "cpus,cluster"; #ranges-size-cells = <0x1>;
#ranges-address-cells = <0x1>;
cpu@0 { address-map = <0xf1000000 gamba 0x£f1000000
compatible = "arm,cortex-a72", 0xeb00000 0x£9000000 &amba rpu 0x£9000000 0x10000 0xO
"arm,armv8"; &memory00000000 0x0 0x80000000 0x0 &tcmffe90000 0xffe90000
0x10000>;
phandle = <0x28>;
cpu@l {
compatible = "arm,cortex-r5";

naro

|
pensEn

Lopper: RTOS without DT support ?

Linaro
-li‘ IIIII

Lopper and non-DT aware OSs (1/2)

Inputs:
O System Device tree or Standard device tree
O Optional: Domain node
O Lopper operations (custom, built-in, or both)
O Lopper assist module for the OS

Outputs:
O Device tree: partial, standard or unmodified
O Code/ headers for the OS

What lopper does:

O

Applies operations to the tree as specified in the lopper operations file (lops)
m Calls input/output assists specific to the target OS

Performs built-in operations to remove non-standard elements

Outputs the Device tree
m Either as a raw dump, or as a validated “pretty printed” version

Outputs OS specific modules based on tree manipulations and output assists

Lopper and non-DT aware Oss (2/2)

Q

/* Lopper RTOS header generation */

#define
#define
#define
#define
#define
#define
#define
#define
#define

cpus = "236"
cpus_cpul = "464"
cpus_cpul = "540"
cpu_opp_table = "620"

cpu_opp_table opp00 =
cpu_opp_table oppl0l =
cpu_opp_ table oppl02 =
cpu_opp_ table opp03 =

dcc = "976"

"700"
"768"
"g36"
"904"

struct cpus {
int cpus_cpu0;
int cpus_cpul;
}
struct cpu opp table {

int cpu opp table opp00;
int :cpu:opp:table:opp01;
int cpu opp table opp02;
int cpu opp table opp03;

naro

|
pensEn

% lopper.py -f —--pretty -i lops/lop-load.dts -i lops/safety-critical.dts
device-trees/system-device-tree-versal-v2.dts output/rtos-header.h

TECH DHTE

How Do | Engage with System Device Trees?

System Device Tree project is part of the Linaro Device Tree Evolution Project

Driven under the OpenAMP umbrella

O

O

O

Openampproject.org
Join the mailing list \-/

https://lists.openampproject.org/mailman/listinfo/system-dt

enA

Includes silicon vendors, OS vendors and others /A\
[]
OpenAMP

Be part of the regular discussions

O

https://github.com/OpenAMP/open-amp/wiki/System-DT-Meeting-Notes-2020

Linaro
£

anesEes

https://lists.openampproject.org/mailman/listinfo/system-dt
https://github.com/OpenAMP/open-amp/wiki/System-DT-Meeting-Notes-2020

Thank you

Accelerating deployment in the Arm Ecosystem

