
LTD20-205
System Device Tree Project
2020-03-25
Tomas Evensen
Stefano Stabellini
Bruce Ashfield

What is a System Device Tree?

• Modern SoCs are very heterogenous
• MPSoC: A53s, R5s, PMU, MicroBlazes

• System Software needs a lot of HW info
• Memory allocated for each domain

• Including shared pages

• Devices assigned to each domain
• Addresses of memory and registers

• Same device can have different addresses

• Topologies (clocks, busses, …)

• Allocation and configuration is complex
• Typically done in an ad-hoc way

• Editing Device Trees and #defines

• Especially tricky for shared resources
• E.g. shared pages for OpenAMP/virtIO

• Industry standards and common tools needed
• One well-defined true source for all configuration

• Common for Linux, firmware, RTOSes, etc.

• Open source tooling to manipulate configuration
• Split up allocated resources to “Execution Domains”

Device Trees and System Device Trees
● Device Trees (DTs) express HW information relevant to Operating Environments

○ Been used by PPC and ARM SSW to define HW that can not be dynamically discovered
○ Used by uboot, Linux, Xen and increasingly being used by RTOS vendors

● Device Trees describes HW nodes and topologies
○ Traditional Device Trees are only describing the world seen from one Address Space

● Additional system level Device Tree information is proposed
○ A System Device Tree (S-DT) describes all HW that later can be divided into different partitions

● System DT additions include two parts:
1. DeviceTree.org specification and tooling additions

■ Describing multiple cpu clusters and corresponding views of their address spaces
■ Enabling source-to-source translations by adding options to keep labels and comments

2. AMP configuration information
■ Resource allocation using Execution Domains
■ Using the a special Device Tree section to specify AMP configuration
■ Specification of shared resources, such as pages for virtIO buffers
■ Intent is to align with hypervisor information (e.g. Xen Dom0-less configuration)

What is an “Execution Domain”?

Execution Domains and Operating Environments

● Domains
○ A Domain is a separate address space, including devices
○ Defined by cores clusters, Execution Levels and

security environments

● Core clusters – Heterogeneous cores
○ E.g. A53s, R5s, PMU, MicroBlazes

● Execution Levels (EL)
○ EL0 – User space EL1 – OS
○ EL2 – Hypervisor EL3 – Firmware

● Security Environments
○ TrustZone (TZ) – HW protecting resources (e.g. memory)
○ Trusted Execution Environment (TEE) – SEL1

● Operating Environments (OE)
○ An OE is the system SW that runs in a Domain, including:

■ Linux (including Android), Free and commercial RTOS’s

■ Bare metal (no OS), Hypervisors

■ Firmware/boot loaders – Trusted FW, PLM, PMU FW, uboot, …

Secure State

Trusted Firmware (TF)

App App

Trusted Execution
Environment (TEE)

Non-secure State

Hypervisor

App App

Linux
App

RTOS

FPGA

MicroBlaze

App App

RTOS

MicroBlaze

App

Bare Metal

A53
Core 0

A53
Core 1

A53
Core 2

A53
Core 3

RPU

R5 Core 0

App App

RTOS

R5 Core 1

App

Bare Metal

Container

App
EL0

EL1

EL2

EL3

App App

Platform Management Unit (PMU)

PMU Firmware

What’s the difference between System DT and DT?

The current proposal: new concepts

● Hardware description
○ cpus,cluster: multiple top-level nodes to describe heterogeneous CPU clusters
○ indirect-bus: a new type of bus that does not automatically map to the parent address space
○ address-map: a property to express different address mappings of CPUs clusters; it can map indirect-buses

● AMP Configuration
○ execution domains

Hardware Description: an example
/* default cluster */
cpus {

cpu@0 {
};

cpu@1 {
};

};

/* additional R5 cluster */
cpus_r5: cpus-cluster@0 {

compatible = "cpus,cluster";

/* specifies address mappings */
address-map = <0xf9000000 &amba_rpu 0xf9000000 0x10000>;

cpu@0 {
};

cpu@1 {
};

};

amba_rpu: indirect-bus@f9000000 {
compatible = "indirect-bus";

};

Why we have a default?
● It is convenient to have an execution domain that owns everything by default
● It is also very common: e.g. Linux running on a Cortex-A cluster
● It turns system device tree into an addition to device tree
● It makes it more natural to introduce system device tree concepts to the device

tree spec
● It allows us to maintain compatibility with existing systems, i.e. Linux booting on

system device tree

How do we describe interrupts?

Interrupts /* default cluster */
cpus {

};

/* additional R5 cluster */
cpus_r5: cpus-cluster@0 {

compatible = "cpus,cluster";

/* specifies address mappings */
address-map = <0xf9000000 &amba_rpu 0xf9000000 0x10000>;

};

/* bus only accessible by cpus */
amba_apu: bus@f9000000 {

compatible = "simple-bus";
gic_a72: interrupt-controller@f9000000 {

};
};

/* bus only accessible by cpus_r5 */
amba_rpu: indirect-bus@f9000000 {

compatible = "indirect-bus";

gic_r5: interrupt-controller@f9000000 {
};

};

• Multple clusters

• Each cluster sees only its
own interrupt controller

• Other hardware hard-
wired to a specific bus
can be specified the
same way

Interrupts
amba: bus@f1000000 {

compatible = "simple-bus";

ranges;
#interrupt-cells = <3>;

interrupt-map-pass-thru = <0xffffffff 0xffffffff 0xffffffff>;
interrupt-map-mask = <0x0 0x0 0x0>;
interrupt-map = <0x0 0x0 0x0 &gic_a72 0x0 0x0 0x0>,

<0x0 0x0 0x0 &gic_r5 0x0 0x0 0x0>;

can@ff060000 {
compatible = "xlnx,canfd-2.0";

reg = <0x0 0xff060000 0x0 0x6000>;
interrupts = <0x0 0x14 0x1>;

};
};

All devices have interrupts
routed to both interrupt
controllers

How do we dedicate assignable resources to
CPUs clusters?

Configuration: execution domains
● An execution domain is a collection of software, firmware, and board

configurations that enable an operating system or an application to run a CPUs
cluster.
○ cpus: physical CPUs where the software is running
○ memory: memory assigned to the domain

■ Memory ranges can be shared across multiple domains, e.g. for communication
○ access: devices assigned to a domain

domains {
openamp_r5 {

compatible = "openamp,domain-v1";
cpus = <&cpus_r5 0x2 0x80000000>;

memory = <0x0 0x0 0x0 0x8000000
0x0 0x10000000 0x0 0x1000>;
access = <&can@ff060000>;

};
};

How do we configure Bus Firewalls?

Bus Firewalls & Device Assignment
● Devices are assigned to execution domains using access
● memory + access have the information necessary to configure bus firewalls

○ Memory ranges dedicated to one execution domain
○ Devices dedicated to one execution domain

● In the example below, the bus firewall can be configured to allow access to the
following address ranges only from the Cortex-R5 cluster:
○ 0 - 0x80000000
○ 0xff060000 - 0xff066000

domains {
openamp_r5 {

compatible = "openamp,domain-v1";
cpus = <&cpus_r5 0x2 0x80000000>;

memory = <0x0 0x0 0x0 0x8000000>;
access = <&can@ff060000>;

};

};

Bus Firewalls & Priorities
● The bus firewall configuration can be derived from memory, access, and the

capability of the bus firewall
○ It can be implemented as a backend to lopper

● Bus firewalls might not be able to protect everything
● We need to set priorities for bus firewall protection
● From one execution domain point of view:

○ Priorities for protecting my memory/MMIO regions from foreign accesses (most important)
○ Priorities for protecting others from my memory accesses
○ We might need higher granularities, to specify priorities per device, per memory range

domains {
openamp_microblaze {

compatible = "openamp,domain-v1";
priority_self = <9>;

memory = < … >
access = < … >

};

};

What about chosen and reserved-memory?

Chosen & Reserved-Memory
● chosen and reserved-memory are top-level nodes dedicated for configurations
● In system device tree, they are dedicated to the configuration of the default CPUs

cluster
● Other execution domains have their own chosen and reserved-memory nodes:

/* configurations for the default cluster */
chosen {
};
reserved-memory {
};
/* execution domains configuration */
domains {

openamp_r5 {
compatible = "openamp,domain-v1";
cpus = <&cpus_r5 0x2 0x80000000>;
memory = <0x0 0x0 0x0 0x8000000>;
access = <&can@ff060000>;
chosen {

bootargs = “console=ttyPS0,115200”;
};
reserved-memory {

[…]
};

};
};

What is “Lopper”?

Lopper
● Lopper

○ Is a tool for manipulating System Device Trees
○ Primary goal is to produce standard devices trees to support existing platforms/OSs

■ Produces any number of outputs through plug-ins: device trees, generated code, custom, etc

○ Integrates with various development workflows
○ Is data driven (there is no magic!)

● A few details:
○ OpenSource, BSD-3 License

■ https://github.com/OpenAMP/open-amp/wiki/System-Device-Trees#Lopper

○ Written in python, using libfdt for tree manipulations
○ Works with dts and dtb inputs
○ Supports basic/simple operations (lops) and more complex python assist modules

■ Depending on the task, both can be used

○ Flexible output is provided via python backends
○ Performs validation and consistency checking during output

https://github.com/OpenAMP/open-amp/wiki/System-Device-Trees

What are the components of Lopper ?

Lopper Components

devicetree.org
• bindings
• schemas
• ….

device
tree blob

device
tree

device
tree blob

Linux

RTOS

Bare Metal

system device
tree

lops

device / board
dts

Standards Based Inputs Open Source Tools Conformant Outputs

Lopper

overlays dtc

libfdt
pyfdt

cpp

python3
frontend

c frontend
libdevice

dtc: schema
validation

Backends

dtb -> dts

c device-
drivers

dtb -> c

firewall

lopper-validator
Lopper
assists

dev
pipeline

How do I run Lopper to create a traditional DT ?

Generating a traditional DT (1/3)
● Inputs:

○ System Device tree
○ Domain node
○ Lopper operations (custom, built-in, or both)

● Outputs:
○ Standard Device tree
○ Optional: Custom device trees

● What lopper does:
○ Applies operations to the tree as specified in the lopper operations file (lops)

■ If specified, Finds the specified domain node
● Applies logic based on the domain node

○ Built-ins, or via python assist

○ Performs built-in operations to remove non-standard elements
○ Outputs the modified system device tree

■ Either as a raw dump, or as a validated “pretty printed” version
■ Either way, the output is standard device tree

Generating a traditional DT (2/3)
% lopper.py --pretty -i lops/lop-load.dts -i lops/lop-domain-r5.dts device-trees/system-device-tree-
versal-v2.dts output/linux-r5.dts

SDT summary:

system device tree: [‘system-device-tree-versal-v2.dts']

lops: ['lops/lop-load.dts', 'lops/lop-domain-r5.dts']

output: output/foo.dts

...

[INFO]: deleting node /cpus

[INFO]: resetting all refcounts

[INFO]: tracking access to node /chosen/openamp_r5

[INFO]: tracking access to node /chosen

[INFO]: tracking access to node /cpus_r5

...

[INFO]: deleting node /amba/can@ff060000

[INFO]: deleting node /amba/can@ff070000

...

[INFO]: deleting node /amba/pci@fca10000

[INFO]: deleting node /amba/watchdog@fd4d0000

[INFO]: deleting node /amba/zynqmp_ipi

...

[INFO]: modify property found: /cpus_r5/::/cpus/

[INFO]: renaming /cpus_r5/ to cpus

...

[DBG+]: outfile is: linux.dtb

[DBG+]: output selected are: ['*']

[INFO]: dtb output format detected, writing .//linux.dtb

[INFO]: writing output dtb: .//linux.dtb

[INFO]: ------> processing lop: system-device-tree-v1,lop,output

[DBG+]: outfile is: linux-partial.dts

[DBG+]: output selected are: ['amba.*']

[DBG]: node_copy_from_path: /amba_apu -> /amba_apu

[DBG]: node_copy_from_path: /amba_rpu -> /amba_rpu

[DBG]: node_copy_from_path: /amba -> /amba

[INFO]: dts format detected, writing .//linux-partial.dts

...

[INFO]: dts format detected, writing output/foo.dts

[DBG+]: [cpus:address-map] phandle replacement of: 0x20 with amba

[DBG+]: [cpus:address-map] phandle replacement of: 0x21 with amba_rpu

[DBG+]: [cpus:address-map] phandle replacement of: 0x22 with memory00000000

[DBG+]: [cpus:address-map] phandle: 0x23 not found, dropping 4 fields

[DBG+]: [cpus:address-map] phandle replacement of: 0x24 with tcmffe90000

[DBG+]: [interrupt-controller@f9000000:interrupt-parent] phandle replacement of: 0x5 with interrupt_controllerf9000000

[DBG+]: [smmu@fd800000:interrupt-parent] phandle replacement of: 0x5 with interrupt_controllerf9000000

[DBG+]: [timer:interrupt-parent] phandle replacement of: 0x5 with interrupt_controllerf9000000

[DBG+]: [interrupt-multiplex:interrupt-map] phandle replacement of: 0x5 with interrupt_controllerf9000000

[DBG+]: [interrupt-multiplex:interrupt-map] phandle replacement of: 0x25 with interrupt_controllerf9000000

[DBG+]: [ethernet@ff0c0000:interrupt-parent] phandle replacement of: 0x26 with interrupt_multiplex

[DBG+]: [ethernet@ff0c0000:iommus] phandle replacement of: 0x27 with smmufd800000

[DBG+]: [openamp_r5:cpus] phandle replacement of: 0x28 with cpus

[DBG+]: [openamp_r5:access] phandle replacement of: 0x29 with memory_r50

[DBG+]: [openamp_r5:access] phandle replacement of: 0x24 with tcmffe90000

[DBG+]: [openamp_r5:access] phandle replacement of: 0xb with ethernetff0c0000

[DBG+]: [zynqmp-power:interrupt-parent] phandle replacement of: 0x26 with interrupt_multiplex

Generating a traditional DT (3/3)
% lopper.py --pretty -i lops/lop-load.dts -i lops/lop-domain-r5.dts device-trees/system-device-tree-
versal-v2.dts output/linux-r5.dts

% cat system-device-tree-versal-d2.dts | grep { | wc -l
84

% cat device-trees/system-device-tree-versal-v2.dts | grep -A
10 "cpus {"

cpus: cpus {

#address-cells = <0x1>;
#size-cells = <0x0>;

#cpus-mask-cells = <0x1>;

compatible = "cpus,cluster";

cpu@0 {

compatible = "arm,cortex-a72",
"arm,armv8";

% cat output/linux-r5.dts | grep { | wc -l
41

% cat output/linux-r5.dts | grep -A 10 "cpus {"
cpus: cpus {

#address-cells = <0x1>;

#size-cells = <0x0>;

#cpus-mask-cells = <0x1>;

compatible = "cpus,cluster";
#ranges-size-cells = <0x1>;

#ranges-address-cells = <0x1>;

address-map = <0xf1000000 &amba 0xf1000000
0xeb00000 0xf9000000 &amba_rpu 0xf9000000 0x10000 0x0
&memory00000000 0x0 0x80000000 0x0 &tcmffe90000 0xffe90000
0x10000>;

phandle = <0x28>;
cpu@1 {

compatible = "arm,cortex-r5";

Lopper: RTOS without DT support ?

Lopper and non-DT aware OSs (1/2)
● Inputs:

○ System Device tree or Standard device tree
○ Optional: Domain node
○ Lopper operations (custom, built-in, or both)
○ Lopper assist module for the OS

● Outputs:
○ Device tree: partial, standard or unmodified
○ Code / headers for the OS

● What lopper does:
○ Applies operations to the tree as specified in the lopper operations file (lops)

■ Calls input/output assists specific to the target OS

○ Performs built-in operations to remove non-standard elements
○ Outputs the Device tree

■ Either as a raw dump, or as a validated “pretty printed” version

○ Outputs OS specific modules based on tree manipulations and output assists

Lopper and non-DT aware Oss (2/2)
% lopper.py -f --pretty -i lops/lop-load.dts -i lops/safety-critical.dts
device-trees/system-device-tree-versal-v2.dts output/rtos-header.h

/* Lopper RTOS header generation */

#define cpus = "236"
#define cpus_cpu0 = "464"
#define cpus_cpu1 = "540"
#define cpu_opp_table = "620"
#define cpu_opp_table_opp00 = "700"
#define cpu_opp_table_opp01 = "768"
#define cpu_opp_table_opp02 = "836"
#define cpu_opp_table_opp03 = "904"
#define dcc = "976“

…

struct _cpus {
int _cpus_cpu0;
int _cpus_cpu1;

}
struct _cpu_opp_table {

int _cpu_opp_table_opp00;
int _cpu_opp_table_opp01;
int _cpu_opp_table_opp02;
int _cpu_opp_table_opp03;

}

How Do I Engage with System Device Trees?
● System Device Tree project is part of the Linaro Device Tree Evolution Project
● Driven under the OpenAMP umbrella

○ Includes silicon vendors, OS vendors and others

○ Openampproject.org

● Join the mailing list

○ https://lists.openampproject.org/mailman/listinfo/system-dt

● Be part of the regular discussions
○ https://github.com/OpenAMP/open-amp/wiki/System-DT-Meeting-Notes-2020

https://lists.openampproject.org/mailman/listinfo/system-dt
https://github.com/OpenAMP/open-amp/wiki/System-DT-Meeting-Notes-2020

Thank you
Accelerating deployment in the Arm Ecosystem

