
Using the Clang Developer Tools
Peter Smith



Contents
● Introduction to the Clang tools
● Clang-format
● Clang-tidy
● Exploring the Clang AST
● Libclang and its python bindings



Clang tools
● Clang is designed to be much more than just a C/C++ Compiler.
● Difficulty in parsing C++ code restricts the number of developer tools

○ Refactoring.
○ Static analysis.
○ IDE syntax highlighting and indexing

● Clang makes libraries available for the development of new tools.
● Project maintains several useful C/C++ processing tools.

○ Code formatting via clang-format.
○ Static analysis via clang-tidy.
○ Refactoring tools such as clang-rename.



Clang tools
● clang-format
● clang-static-analyzer
● clang-tidy



clang-format
● A code formatting tool that specializes in 80 column layout.
● Supports many styles

○ LLVM, Google, Chromium, WebKit, GNU.
○ Style can be modified with a simple configuration file.

● Can be integrated with editors
○ clang-format-region with emacs.

● Output good enough that it can be sensibly used as part of a coding standard
○ LLD requires clang-format.



Example on iocc contest entry
   #include   /*recall-the\    /-good--old-\    /IOCCC-days!\    */<unistd.h>
   typedef  unsigned/*int*/  short U;U(main)  [32768],n,r[8];  __attribute__((
  # define  R(x)       A(r[  7-(n       >>x&  7)],       (n>>  x>>3       )%8)
  #define   C(x)       (U*)  ((/*             |IO|             -dpd
  */char*)  main       +(x)  )/*|             |CC|             ll*/
  # define  A(v,       i)(i  ?i<2             ?C(v             ):i\
  -4?v+=2,  C(i-       6?v-  2:v+       *C(v  -2))       :C(v  -=2)       :&v)
  /*lian*/  constructor))U(  x)(){for(;;*r+=  2,*r+=!n?_exit(  write(2,"Illeg"
  "al ins"   "truction ;-"    "(\n",24)),0:     n>>8==001?(      signed char

                 )n*2   :548==n>>    6&&usleep     /**/(10
                 )+n%  64==   4?0*  write  (r[7   /**/],C(
                 *C(*  r)),   *C(*  r+2)   )+4:  /**/ n>>9
                 ==63   &&--r[7-n/   64%8]?n%+  /**/  64*-
                 2:0,         n>>6  ==47   ?*R( 0):n>>12==1?
                 *R(0  )=*R   (+6)  :n>>  12==+       14?*
                 R(0)   -=*R(2*3)    :0)n=*C(*        r);}

// Courtesy of https://www.ioccc.org/2015/endoh3/prog.c



Clang-format output
#include /*recall-the\    /-good--old-\    /IOCCC-days!\    */ < unistd.h >
typedef unsigned /*int*/ short U;
U(main)[32768], n, r[8];
__attribute__((
#define R(x) A(r[7 - (n >> x & 7)], (n >> x >> 3) % 8)
#define C(x)                                                                   \
  (U *)((/*             |IO|             -dpd
  */ char *)main +                    \
        (x)) /*|             |CC|             ll*/
#define A(v, i)                                                                \
  (i ? i < 2 ? C(v) : i - 4 ? v += 2,                                          \
   C(i - 6 ? v - 2 : v + *C(v - 2)) : C(v -= 2) : &v)
    /*lian*/ constructor)) U(x)() {
  for (;; *r += 2, *r += !n ? _exit(write(2, "Illeg"
                                             "al ins"
                                             "truction ;-"
                                             "(\n",
                                          24)),
          0 : n >> 8 == 001
                  ? (signed char

                     )n *
                        2
                  : 548 == n >> 6 && usleep /**/ (10) + n % 64 == 4
                        ? 0 * write(r[7 /**/], C(*C(*r)), *C(*r + 2)) + 4
                        : /**/ n >> 9 == 63 && --r[7 - n / 64 % 8]
                              ? n % +/**/ 64 * -2
                              : 0,
          n >> 6 == 47 ? *R(0) : n >> 12 == 1
                                     ? *R(0) = *R(+6)
                                     : n >> 12 == +14 ? *R(0) -= *R(2 * 3) : 0)
    n = *C(*r);
}



Compilation Database
● Majority of C/C++ code makes use of the preprocessor

○ #include, #define, #ifdef …

● Many analyses not possible without the command line options.
● Clang tools rely on a compilation database for these options.

○ Simple JSON file recording filename, options, and directory where the compilation is run.

● Libraries such as libclang can make use of compilation database.
● Several ways to obtain a compilation database from your build

○ cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=1
○ ninja -t compdb
○ Tool called bear can be used for other build systems, for example bear make



clang static analyzer
● Performs symbolic execution of the program

○ Can find some bugs that would only show up in testing if the relevant path was exercised.
● Limited support for inter-procedural analysis

○ Not done by default.
● Quality of static analysis is highly dependent on codebase

○ False positive rate higher in C++.
○ Results often disjoint from other static analyzers.

● Integrates with build system via scan-build tool.
● Produces annotated source code report.



Example clang static analyzer output
#include <stdio.h>

int main(int argc, char** argv) {
    int val;
    if (argc > 1)
        val = argc;
    printf("%d", val);
    return 0;
}



clang-tidy
● Lint like tool for checking against a coding style or readability.
● Can offer and apply fixes.
● Can be used as a text-based front-end for the clang static analyzer.
● Helper script run-clang-tidy.py available to run on all files in the compilation 

database.



clang-tidy example

#include <vector>
#include <iostream>

int main(void) {
    std::vector<int> v = { 1, 2, 3, 4, 5 };
    for (std::vector<int>::iterator it = v.begin();
         it != v.end(); ++it)
        std::cout << *it << "\n";
    return 0;
}

// clang-tidy -checks=modernize* modernise.cpp
// --extra-arg=”-std=c++14” --

modernise.cpp:4:10: warning: redundant void argument list in 
function definition [modernize-redundant-void-arg]
int main(void) {
         ^~~~~
modernise.cpp:6:5: warning: use range-based for loop instead 
[modernize-loop-convert]
for (std::vector<int>::iterator it = v.begin(); it != v.end(); ++it)
^   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    (int & it : v)
modernise.cpp:6:10: warning: use auto when declaring iterators 
[modernize-use-auto]
for (std::vector<int>::iterator it = v.begin(); it != v.end(); ++it)
         ^
note: this fix will not be applied because it overlaps with another 
fix



Building your own tools
● libclang
● libtooling



Clang structure
● Clang has a modular structure, with a library based design including:

○ libbasic source code abstractions.
○ libast classes to represent the AST.
○ liblex and libparse.
○ libsema semantic analysis to build an AST.
○ librewrite editing of text buffers.
○ libanalysis static analysis.

● These modules are built upon to provide libraries that can build tools
○ libclang a stable high-level C interface to clang.
○ libtooling a less stable but fully featured C++ interface to clang.
○ Plugins, to run during compilation



Clang library options and recommendations
● Libclang

○ High level, stable abstraction makes it the default choice for most tools.
○ C++ IDE support for indexing and code-completion built in.
○ Not all of the underlying AST exposed by design.
○ Python bindings available.
○ Not really suitable for AST modification.

● Plugins
○ Run additional actions on the AST during compilation time.
○ Useful when the build status is dependent on the output of AST action.
○ Uses the same unstable C++ interface to the Clang AST.

● Libtooling
○ Build standalone tools using the full C++ interface to the AST.
○ Includes modification of the AST.
○ Can share code with plugins.



libclang
● Before you start, a word of warning

○ Make sure you have a clear idea of what you want to do before jumping in.
○ Some knowledge of the clang AST structure is necessary.
○ The documentation is sparse, expect to have to look through the libclang API.
○ Examples that you find online can be out of date and simple.
○ Python bindings can have memory/performance problems compared to C.



libclang
● Provides a cursor based interface to the AST

○ A cursor abstracts all the different AST nodes behind a single interface.
○ Source location, Name and symbol resolution, Type, Child nodes

● C API has a visitor based API with callbacks for each child node.
● Python API provides an iterator based interface via get_children.
● Typical program:

○ For each translation unit in compilation database
■ Parse translation unit with libclang

■ Visit each node starting with the root cursor

● Do some action on each node



Using libclang
● Goal: print a histogram of the number of function parameters in a project

○ Include C functions and C++ member functions.
○ Do not include C++ lambda expressions to keep program simple.
○ Use python bindings for shorter program and development time.

● Shopping list
○ libclang.so shared library.
○ Python bindings for cindex in llvm/tools/clang/bindings/python/clang/cindex.py
○ Compilation database for our program.

● Environment variables
○ PYTHONPATH to find cindex.py.
○ LD_LIBRARY_PATH to find libclang.so

■ $(llvm-config --libdir)



Iterating through our compilation database
from clang.cindex import *
compdb = CompilationDatabase.fromDirectory(“path/to/dir/containing/compile_commands.json”)
commands = compdb.getAllCompileCommands()
index = Index.create()
for cc in commands:
   arglist = [ar for ar in cc.arguments] # index.parse needs an array not an iterator.
   tu = index.parse(None, arglist) # Pass None for filename as arglist contains it.
   visit_node(tu.cursor) # tu.cursor is root AST node, we provide visit_node.



Processing cursor
def visit_node(node, parent_fn = None):
    if ((node.kind == CursorKind.FUNCTION_DECL or
         node.kind == CursorKind.CXX_METHOD) and node.isDefinition()):
      # Check if we have processed this function before (Header file)
      # Parameters found will be attributed to this function.
      parent_fn = node
    elif node.kind == CursorKind.PARM_DECL:
      # record parameter for function
    for c in node.getChildren():
        visit_node(c, parent_fn)



Complications
● Analysing a whole program rather than translation unit needs care

○ Header files will be seen more than once.
○ I chose to only look at function definitions.
○ Can use cursor.get_usr() “Unified Symbol Resolution” to compare across translation 

units.
● Lambda functions are difficult to handle

○ Requires deeper knowledge of the Clang AST.
● Parsing is slow

○ Index.parse can be passed a flag to skip function bodies, but this means we can’t distinguish 
between declarations and definitions.

○ Parsing via libclang failed at least once where clang succeeds.
○ Can run out of memory if your program keeps references to information in translation units.



Proportions of first 1000 source files in LLVM
● Advantage of python is that 

we can use the libraries.
● Histogram courtesy of 

matplotlib.



Libtooling
● C++ interface to clang.

○ In tree build by adding program to clang/tools/extra simplest way to get started.
○ Out of tree build needs many includes and libraries added.

● Can modify the program with a rewriter or clang-apply-replacements
● Helper functions available to use compilation database.
● Two methods to match the clang AST

○ Recursive AST Visitor.
○ AST Matcher.

● AST matcher is a DSL like language that can concisely describe common 
matches.

○ clang-query tool can be used to interactively work out your matcher.
● C++ AST matcher implementation of python program was of similar size.



References
● Clang static analyzer

○ http://clang-analyzer.llvm.org/ 

● Clang tidy
○ http://clang.llvm.org/extra/clang-tidy/index.html 

● libclang
○ https://eli.thegreenplace.net/2011/07/03/parsing-c-in-python-with-clang 
○ http://llvm.org/devmtg/2010-11/Gregor-libclang.pdf 
○ http://clang.llvm.org/doxygen/group__CINDEX.html
○ https://github.com/llvm-mirror/clang/blob/master/bindings/python/clang/cindex.py 

● Compilation Database
○ https://eli.thegreenplace.net/2014/05/21/compilation-databases-for-clang-based-tools 

https://www.google.com/url?q=http://clang-analyzer.llvm.org/&sa=D&ust=1521519750907000&usg=AFQjCNGR09mI28G31Cld6crvZdC5Fd6NMA
https://www.google.com/url?q=http://clang.llvm.org/extra/clang-tidy/index.html&sa=D&ust=1521519750907000&usg=AFQjCNFrClG8PABDd7h2IZoCIkQwyxbh_w
https://www.google.com/url?q=https://eli.thegreenplace.net/2011/07/03/parsing-c-in-python-with-clang&sa=D&ust=1521519750908000&usg=AFQjCNH3byehSr3jFw9dc87FpNf577OiBQ
https://www.google.com/url?q=http://llvm.org/devmtg/2010-11/Gregor-libclang.pdf&sa=D&ust=1521519750908000&usg=AFQjCNE9IPY2p1EZuBx9ecWFY8Z1CNBPKA
https://www.google.com/url?q=http://clang.llvm.org/doxygen/group__CINDEX.html&sa=D&ust=1521519750908000&usg=AFQjCNGRfSuyuk7W_nv_x8qJ7UA6Es8cRg
https://www.google.com/url?q=https://github.com/llvm-mirror/clang/blob/master/bindings/python/clang/cindex.py&sa=D&ust=1521519750908000&usg=AFQjCNFjO0RkRXgHVWSfUJjAXOil8UR8kg
https://www.google.com/url?q=https://eli.thegreenplace.net/2014/05/21/compilation-databases-for-clang-based-tools&sa=D&ust=1521519750908000&usg=AFQjCNGMCilxKYdpGvB9nmEbRV1m6JsbpQ


References for libtooling
● Github repo of relatively up to date examples

○ https://github.com/eliben/llvm-clang-samples 
● Article about AST matchers

○ https://eli.thegreenplace.net/2014/07/29/ast-matchers-and-clang-refactori
ng-tools

● The same example implemented with AST Visitor and AST Matcher
○ https://jonasdevlieghere.com/understanding-the-clang-ast/ 

https://www.google.com/url?q=https://github.com/eliben/llvm-clang-samples&sa=D&ust=1521519750924000&usg=AFQjCNF_HCd0ri67zNCkl1g8mE7VMwUvRQ
https://www.google.com/url?q=https://eli.thegreenplace.net/2014/07/29/ast-matchers-and-clang-refactoring-tools&sa=D&ust=1521519750924000&usg=AFQjCNHOJjiArcik35u9E7T-eGXStSTZLg
https://www.google.com/url?q=https://eli.thegreenplace.net/2014/07/29/ast-matchers-and-clang-refactoring-tools&sa=D&ust=1521519750924000&usg=AFQjCNHOJjiArcik35u9E7T-eGXStSTZLg
https://www.google.com/url?q=https://jonasdevlieghere.com/understanding-the-clang-ast/&sa=D&ust=1521519750924000&usg=AFQjCNEmJDpmBIcbl8KUb3KCyQaQ4Tf_jg


Conclusions
● Clang has many extra tools that you can make use of even 

if you don’t compile your project with clang.
● Building your own tool is practical but non-trivial.

○ Make sure you have a good idea of what you want to build!

● Expect a bit of choice paralysis.
● libclang python bindings are useful for simple analysis 

programs.
● AST Matchers can be used to write transformations.

○ Expect to need to know much more about clang internals.



Thank You

#HKG18
HKG18 keynotes and videos on: connect.linaro.org
For further information: www.linaro.org
 

https://www.google.com/url?q=http://www.linaro.org&sa=D&ust=1521519751122000&usg=AFQjCNHEfnLafYY_-MGijhYjCxAVa8rHeg

