Linaro
< connect
Hong Kong 2018

Using the Clang Developer Tools
Peter Smith

T T

Contents

e Introduction to the Clang tools
Linaro e Clang-format
connect e Clang-tidy
Hong Kong 2018
e Exploring the Clang AST
[

Libclang and its python bindings

Clang tools

e Clang is designed to be much more than just a C/C++ Compiler.

e Difficulty in parsing C++ code restricts the number of developer tools

o Refactoring.
o Static analysis.
o IDE syntax highlighting and indexing

e Clang makes libraries available for the development of new tools.

e Project maintains several useful C/C++ processing tools.
o Code formatting via clang-format.
o Static analysis via clang-tidy.
o Refactoring tools such as clang-rename.

Linaro
((b connect
Hong Kong 2018

Clang tools

e clang-format

Linaro e clang-static-analyzer
connect e clang-tidy

Hong Kong 2018

clang-format

A code formatting tool that specializes in 80 column layout.

Supports many styles

o LLVM, Google, Chromium, WebKit, GNU.
o Style can be modified with a simple configuration file.

Can be integrated with editors
o clang-format-region with emacs.

Output good enough that it can be sensibly used as part of a coding standard
o LLD requires clang-format.

.
(D) ibmcct

Hong Kong 2018

Example on iocc contest entry

#include
typedef
define
#define
*/charx)
define
-47v+=2,
/*xLlianx/
"al ins"

/*recall-the\
unsigned/*intx*/
R(x) A(r[
C(x) (Ux)
main +(x)
A(v, i) (i
C(i- 67v-—
constructor))U(

"truction ;-"

Ynx2 :548==n>>
4?70 write (r[7

Y+n% 64==
*C(x r)),

==63 &&--r[7-n/

/-good--old-\
short Uj;U(main)

7-(n >>x&
((/*
) /x|
?24<2
2:v+ *C(v
x) () {for (;;xr+=
"(\n",24)),0:
6&&usleep

/IOCCC-days!\
[32768],n,r[8];

7], (n>>
| 10|
|cC|
?2C(v
-2)) :C(v
2,xr+=1n?_exit(
n>>8==0017(
/** /(10

/*x[],C(

*C(*x r+2) Y+4: /*x%x/ n>>9

64%8] 2n%+

/*x*x/ 64%x-—

2:0, n>>6 ==47 ?*R(0):n>>12==17?
*R(O)=*R (+#6) :n>> 12==+ 14?7 %
R(0) -=%R(2%3) :0)n=*C(* r);}

// Courtesy of https://www.ioccc.org/2015/endoh3/prog.c

*/<unistd.h>
_attribute__ ((

x>>3 %8)
-dpd
1lx/
)i\
-=2) 1&v)

write(2,"Illeg"
signed char

Linaro

connect

Hong Kong 2018

Clang-format output

#include /*recall-the\ /-good--old-\ /I0CCC-days!\ */ < unistd.h >
typedef unsigned /xint*/ short U3
U(main)[32768], n, r[8];
__attribute__((
#define R(x) A(r[7 - (n >> x & 7)1, (n >> x >> 3) % 8)
#define C(x) \
(U %) ((/* |10 -dpd
*/ char x)main + \
(x)) /x| lcc] 1x/
#define A(v, i)
(i?2di<22cC(v) tdi-42v+=2,
C(i -6 2v-22:v+*C(v-2)):C(v-=2): &)
/*lianx/ constructor)) U(x)() {
for (33 *r += 2, *xr += !n ? _exit(write(2, "Illeg"
"al ins"
"truction ;-"
"(\n",
24)),

-

® ¢ n>> 8 == 001
? (signed char

)n
2
: 548 == n >> 6 &% usleep /*xx/ (10) + n % 64 == 4
?2 0 *x write(r[7 /*x/], C(*C(*r)), *C(xr + 2)) + 4
¢ /xx/ n >> 9 == 63 && --r[7 - n / 64 % 8]
2 n % +/*x%x/ 64 x -2
: 0,
n>> 6 ==47 2 *R(0) : n >> 12 == 1
? *xR(0) = *R(+6)
: n>> 12 == +14 ? *R(0) -= *R(2 * 3) : 0)
n = xC(*r);

Hong Kong 2018

Compilation Database

e Majority of C/C++ code makes use of the preprocessor
o #include, #define, #ifdef ...

e Many analyses not possible without the command line options.

e Clang tools rely on a compilation database for these options.
o Simple JSON file recording filename, options, and directory where the compilation is run.

e Libraries such as libclang can make use of compilation database.

e Several ways to obtain a compilation database from your build
o cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=1
o ninja -t compdb
o Tool called bear can be used for other build systems, for example bear make

Linaro
< (’ connect
Hong Kong 2018

clang static analyzer

Performs symbolic execution of the program

o Can find some bugs that would only show up in testing if the relevant path was exercised.
Limited support for inter-procedural analysis

o Not done by default.
Quality of static analysis is highly dependent on codebase

o False positive rate higher in C++.
o Results often disjoint from other static analyzers.

Integrates with build system via scan-build tool.
Produces annotated source code report.

Linaro
((b connect
Hong Kong 2018

Example clang static analyzer output
#include <stdio.h>

<~ C ® ® 127.0.0.1:8181/report-2de DWW ¥ » =
int main(int argc, charxx argv) { RN TRRonT
. Bug Summary
int val;
. File: static.c
1 f (a rgC > l) Warning: line 7, column 5
2nd function call argument is an uninitialized value
val = argc;)
Report Bug
7 nmozAM .
printf("%d", val); Annotated Source Code
r e t u r n O ; Press '?' to see keyboard shortcuts
} Show analyzer invocation

! show only relevant lines
#include <stdio.h>

1
2
3 int main(int argc, char** argv) {
4 int val;

' ‘1 ‘val' declared without an initial value — j

s if (argc > 1)

| 2 « Assumingargc'is <=1 = J

(8« Taking false branch — '

6 val = argc;
7 printf("sd", val);

| 4« 2nd function call argument is an uninitialized value J

8 return 0;

connect

Hong Kong 2018

clang-tidy

Lint like tool for checking against a coding style or readability.

Can offer and apply fixes.

Can be used as a text-based front-end for the clang static analyzer.

Helper script run-clang-tidy.py available to run on all files in the compilation
database.

“e=,\ Linaro
g @ ® 33 connect
R Hong Kong 2018

clang-tidy example

#include <vector>
#include <iostream>

int main(void) {
std::vector<int> v = { 1, 2, 3, 4, 5 };
for (std::vector<int>::iterator it = v.begin();
it = v.end(); ++it)
std::cout << *it << "\n";
return 0;

}

// clang-tidy -checks=modernizex modernise.cpp
// ——extra-arg="-std=c++14” --

modernise.cpp:4:10: warning: redundant void argument list din
function definition [modernize-redundant-void-arg]
int main(void) {

ANmmnn
modernise.cpp:6:5: warning: use range-based for loop instead
[modernize-loop-convert]

(int & it : v)
modernise.cpp:6:10: warning: use auto when declaring iterators
[modernize-use-auto]
for (std::vector<int>::iterator it = v.begin(); it != v.end(); ++it)
A
note: this fix will not be applied because it overlaps with another
fix

Hong Kong 2018

Building your own tools

e libclang

Linaro e libtooling
connect

Hong Kong 2018

Clang structure

e C(Clang has a modular structure, with a library based design including:
o libbasic source code abstractions.

libast classes to represent the AST.

liblex and libparse.

libsema semantic analysis to build an AST.

librewrite editing of text buffers.

o libanalysis static analysis.

e These modules are built upon to provide libraries that can build tools
o libclang a stable high-level C interface to clang.

o libtooling a less stable but fully featured C++ interface to clang.
o Plugins, to run during compilation

O O O O

Linaro
((b connect
Hong Kong 2018

Clang library options and recommendations
e Libclang

o High level, stable abstraction makes it the default choice for most tools.
o C++ IDE support for indexing and code-completion built in.

o Not all of the underlying AST exposed by design.

o Python bindings available.

o Not really suitable for AST modification.

e Plugins
o Run additional actions on the AST during compilation time.
o Useful when the build status is dependent on the output of AST action.
o Uses the same unstable C++ interface to the Clang AST.
e Libtooling
o Build standalone tools using the full C++ interface to the AST.

o Includes modification of the AST.
o Can share code with plugins.

Linaro
(@ b connect
Hong Kong 2018

libclang

Before you start, a word of warning

o O O O O

Make sure you have a clear idea of what you want to do before jumping in.
Some knowledge of the clang AST structure is necessary.

The documentation is sparse, expect to have to look through the libclang API.
Examples that you find online can be out of date and simple.

Python bindings can have memory/performance problems compared to C.

“e=,\ Linaro
g @ ® 33 connect
R Hong Kong 2018

libclang

e Provides a cursor based interface to the AST
o A cursor abstracts all the different AST nodes behind a single interface.

o Source location, Name and symbol resolution, Type, Child nodes

e C API has a visitor based API with callbacks for each child node.
e Python API provides an iterator based interface via get_children.
e Typical program:
o For each translation unit in compilation database
m Parse translation unit with libclang

m Visit each node starting with the root cursor
e Do some action on each node

Linaro
((b connect
Hong Kong 2018

Using libclang

e Goal: print a histogram of the number of function parameters in a project
o Include C functions and C++ member functions.
o Do not include C++ lambda expressions to keep program simple.
o Use python bindings for shorter program and development time.
e Shopping list
o libclang.so shared library.
o Python bindings for cindex in Llvm/tools/clang/bindings/python/clang/cindex.py
o Compilation database for our program.

e Environment variables

o PYTHONPATH to find cindex.py.

o LD_LIBRARY_PATH to find libclang.so
m $(llvm-config —--libdir)

Linaro
((b connect
Hong Kong 2018

Ilterating through our compilation database

from clang.cindex import *
compdb = CompilationDatabase.fromDirectory(“path/to/dir/containing/compile_commands.json”)
commands = compdb.getAllCompileCommands ()
index = Index.create()
for cc in commands:
arglist = [ar for ar in cc.arguments] # index.parse needs an array not an iterator.
tu = index.parse(None, arglist) # Pass None for filename as arglist contains it.

visit_node(tu.cursor) # tu.cursor is root AST node, we provide visit_node.

Hong Kong 2018

Processing cursor

def visit_node(node, parent_fn = None):
if ((node.kind == CursorKind.FUNCTION_DECL or
node.kind == CursorKind.CXX_METHOD) and node.isDefinition()):
Check if we have processed this function before (Header file)
Parameters found will be attributed to this function.
parent_fn = node
elif node.kind == CursorKind.PARM_DECL:
record parameter for function
for ¢ in node.getChildren():
visit_node(c, parent_fn)

Hong Kong 2018

Complications

e Analysing a whole program rather than translation unit needs care

o Header files will be seen more than once.

o | chose to only look at function definitions.

o Canuse cursor.get_usr () “Unified Symbol Resolution” to compare across translation
units.

e Lambda functions are difficult to handle
o Requires deeper knowledge of the Clang AST.
e Parsing is slow
o Index.parse can be passed a flag to skip function bodies, but this means we can’t distinguish
between declarations and definitions.

o Parsing via libclang failed at least once where clang succeeds.
o Can run out of memory if your program keeps references to information in translation units.

Linaro
< () connect
Hong Kong 2018

Proportions of first 1000 source files in LLVM

e Advantage of python is that

40000 - we can use the libraries.
e Histogram courtesy of
35000 + .
matplotlib.
30000 -+
25000 -+
20000 -~

15000 +

10000 A

5000 A

T T T
10 15 20

) connect

" Hong Kong 2018

Libtooling

e C++ interface to clang.

o Intree build by adding program to clang/tools/extra simplest way to get started.
o Out of tree build needs many includes and libraries added.

e Can modify the program with a rewriter or clang-apply-replacements
e Helper functions available to use compilation database.

e Two methods to match the clang AST

o Recursive AST Visitor.
o AST Matcher.

e AST matcher is a DSL like language that can concisely describe common
matches.

o clang-query tool can be used to interactively work out your matcher.
e C++ AST matcher implementation of python program was of similar size.

Linaro
< () connect
Hong Kong 2018

References

e C(Clang static analyzer

o http://clang-analyzer.llvm.org/

e C(lang tidy
o http://clang.llvm.org/extra/clang-tidy/index.html
e libclang
o https://eli.thegreenplace.net/2011/07/03/parsing-c-in-python-with-clang
o http://llvm.org/devmtg/2010-11/Gregor-libclang.pdf
o http://clang.llvm.org/doxygen/group CINDEX.html
o https://qithub.com/llvm-mirror/clang/blob/master/bindings/python/clang/cindex.py

e Compilation Database
o https://eli.thegreenplace.net/2014/05/21/compilation-databases-for-clang-based-tools

https://www.google.com/url?q=http://clang-analyzer.llvm.org/&sa=D&ust=1521519750907000&usg=AFQjCNGR09mI28G31Cld6crvZdC5Fd6NMA
https://www.google.com/url?q=http://clang.llvm.org/extra/clang-tidy/index.html&sa=D&ust=1521519750907000&usg=AFQjCNFrClG8PABDd7h2IZoCIkQwyxbh_w
https://www.google.com/url?q=https://eli.thegreenplace.net/2011/07/03/parsing-c-in-python-with-clang&sa=D&ust=1521519750908000&usg=AFQjCNH3byehSr3jFw9dc87FpNf577OiBQ
https://www.google.com/url?q=http://llvm.org/devmtg/2010-11/Gregor-libclang.pdf&sa=D&ust=1521519750908000&usg=AFQjCNE9IPY2p1EZuBx9ecWFY8Z1CNBPKA
https://www.google.com/url?q=http://clang.llvm.org/doxygen/group__CINDEX.html&sa=D&ust=1521519750908000&usg=AFQjCNGRfSuyuk7W_nv_x8qJ7UA6Es8cRg
https://www.google.com/url?q=https://github.com/llvm-mirror/clang/blob/master/bindings/python/clang/cindex.py&sa=D&ust=1521519750908000&usg=AFQjCNFjO0RkRXgHVWSfUJjAXOil8UR8kg
https://www.google.com/url?q=https://eli.thegreenplace.net/2014/05/21/compilation-databases-for-clang-based-tools&sa=D&ust=1521519750908000&usg=AFQjCNGMCilxKYdpGvB9nmEbRV1m6JsbpQ

References for libtooling

e Github repo of relatively up to date examples

o https://github.com/eliben/llvm-clang-samples
e Article about AST matchers

o https://eli.thegreenplace.net/2014/07/29/ast-matchers-and-clang-refactori

ng-tools
e The same example implemented with AST Visitor and AST Matcher

o https://jonasdevlieghere.com/understanding-the-clang-ast/

https://www.google.com/url?q=https://github.com/eliben/llvm-clang-samples&sa=D&ust=1521519750924000&usg=AFQjCNF_HCd0ri67zNCkl1g8mE7VMwUvRQ
https://www.google.com/url?q=https://eli.thegreenplace.net/2014/07/29/ast-matchers-and-clang-refactoring-tools&sa=D&ust=1521519750924000&usg=AFQjCNHOJjiArcik35u9E7T-eGXStSTZLg
https://www.google.com/url?q=https://eli.thegreenplace.net/2014/07/29/ast-matchers-and-clang-refactoring-tools&sa=D&ust=1521519750924000&usg=AFQjCNHOJjiArcik35u9E7T-eGXStSTZLg
https://www.google.com/url?q=https://jonasdevlieghere.com/understanding-the-clang-ast/&sa=D&ust=1521519750924000&usg=AFQjCNEmJDpmBIcbl8KUb3KCyQaQ4Tf_jg

Conclusions

e Clang has many extra tools that you can make use of even
Linaro if you don’t compile your project with clang.
connect e Building your own tool is practical but non-trivial.

Hong Kong 2018

o Make sure you have a good idea of what you want to build!
e Expect a bit of choice paralysis.

e libclang python bindings are useful for simple analysis
programs.

e AST Matchers can be used to write transformations.
o Expect to need to know much more about clang internals.

Linaro
< connect
Hong Kong 2018

Thank You

#HKG18
HKG18 keynotes and videos on: connect.linaro.org

For further information: www.linaro.org

T

e e e

https://www.google.com/url?q=http://www.linaro.org&sa=D&ust=1521519751122000&usg=AFQjCNHEfnLafYY_-MGijhYjCxAVa8rHeg

