Scientific Computing on ARM
Part |

Chris Adeniyi-Jones
Principal Engineer, Software and Large-Scale Systems
ARM Research

Linaro Connect - Budapest
Thursday 9t March 2017

©ARM 2017

Agenda

How this got started ...

Ecosystem for HPC
= Compilers

= Libraries

= Debuggers

= Profilers

Scalable Vector Extension
Final Thoughts
Hands-on Sessions

©ARM 2017

ARM

Small beginnings: Mont-Blanc Project - 201 |

Develop an energy-efficient HPC prototype Port and optimize HPC Research into technologies
using low-power commodity embedded applications on the required for the next-generation
technology. prototype HPC system

el Source files (C, C++, FORTRAN, Python, ...))

Compilers
>

3 ©ARM 2017 ARM

4

Mont-Blanc HPC Software Ecosystem

[gfortran]—;[GNU compiler suite |-,

g++
(Mercarium)
JDK

(ATEAS),
(Boost)|
(clBLAS }\
)
(HDFS }

F

>
n

n
(%}

T
_‘

2

\
\
\
U

LAPACK /}[Scientific Libraries

J_\&r:t:ﬂanc

A

(PETSc
ARM

Performance
Libraries

BLIS '

(Extrae |

(Allinea DDT

Developer tools

Allinea MAP ']

©ARM 2017

software stack
components

/
/

/

Cluster management

Power Adaptive Scheduling |

@]
¥
L

'/ Energy Fairshare Scheduling |

v

Energy Cap Scheduling |

HW support Power Monitor |

'/ PAPI support extension |

\ / Power Monitor for Jetson TX1]
St
\(Storage K

ARM

Why “Commodity’?

500 r T r -
8 RO R Cost
a. 400 - \ . ope
o ' \ Availability
= /
2 3007, x86 Performance
g y - - RISC
@200 ~ v | Vector/SIMD |-
S /7 . o
> | . Energy efficiency?
€ 100} Ve :
2 | S ;

01995 3000 0055010

Figure 1: TOP500: Special-purpose HPC replaced
by RISC microprocessors, in turn displaced by x86

Supercomputing with Commodity CPUs: Are Mobile SoCs Ready for HPC?
Nikola Rajovic, Paul M. Carpenter, Isaac Gelado, Nikola Puzovic,Alex Ramirez, Mateo Valero

5 ©ARM 2017 ARM

ARM RESEARCH

Serious ARM HPC deployments starting in 2017

= Two big announcements in 2017 about ARM in HPC in Europe

Bull Atos to Build for HPC Prototype for Mont-Blanc Project B Uiiversi
using Cavium ThunderX2 Processor 5] 4] lélf?tfsﬁllggﬁ GW4‘

= January 16, 2017 by staff Leave a Comment B

. _ Announcing the GW4 Tier 2 HPC service, ‘Isambard":
Today the Mont-Blanc European project announced it .
has selected Cavium's ThunderX2 ARM server processor named after Isambard K|ngd0m Brunel

to power its new HPC prototype.

System specs:
The new Mont-Blanc prototype will be built by Atos, the
Cray CS-400 system

coordinator of phase 3 of Mont-Blanc, using its Bull

expertise and products. The platform will leverage the dtesiiechnologies 10,000+ ARMvS8 cores

infrastructure of the Bull sequana pre-exascale HPC Optimised software stack

supercomputer range for network, management, Technology Companson

cooling, and power. Atos and Cavium signed an « x86. KNL. Pascal

t to collaborate to develop thi latform, th king Mont-Bl - ’
) ;@I;;::Zii:fot::uandz:;ze o develop this new platform, thus making Mont-Blanc an To be installed March-Dec 2017
(,. £4 7m total project cost over 3 years 3
| ot & e

4° I n S I de race to Exascale intensifies, we are pleased to be the vendor of choice |.K.Brunel 1804-1859

erwith Atos to deliver Mont-Blanc platform” said Rishi Chugh, Director of Mclnt Des. b ik bristol.ac.uk
rketifg, Data Center Processor Group at Cavium. “ThunderX2 builds on established -
architecture and ecosystem of ThunderX delivering performance competitive with next

generation of incumbent processors”. !

Fujitsu HPC CPU

Post-K: Fujitsu HPC CPU to Support ARMv8 ARM rujitsu

Post-K fully utilizes Fujitsu proven supercomputer microarchitecture

Fujitsu, as a lead partner of ARM HPC extension development, is
working to realize ARM Powered® supercomputer w/ high application
performance

ARM v8 brings out the real strength of Fujitsu’s microarchitecture

HPC apps acceleration feature Post-K FX10 | K computer
! FMA:Floating Multiply and Add | v
Math. acceleration primitives* | v Enhanced

Inter core barrier v
b Sector cache v Enhanced
Hardware prefetch assist v Enhanced v

. Tofu interconnect vintegrated = ¢Integrated

3
<

* Mathematical acceleration primitives include trigonometric functions, sine & cosines, and exponential..

i -

slides from Fujitsu at ISC’ 16

7 ©ARM 2017 ARM

Ecosystem for HPC

Ecosystem for HPC

List of software components needed:
= Linux OS availability

Compilers
Libraries

Debuggers
Profilers

Job schedulers

Mix of open source and commercial products and applications...

©ARM 2017 ARM

ARM HPC ecosystem roadmap

=] AppliedMicro X-Gene | &2

. Released
‘ Planned

Concept

Qualcomm Centriq AppliedMicro X-Gene 3

Hardware 4= AMD Seattle Phytium Mars Fujitsu — Post K (SVE)
I Cavium ThunderX Cavium ThunderX2
I OpenHPC 1.2 =
Open-Source 4l ARM Optimized Routines ‘ARM Optimized Routines — vector versions
@l GCC (gcc/g++/gfortran)
& LLVM - clang < LLVM - Flang
171 ARM C/C++ Compiler — ahead of LLVM trunk <> ARM Fortran Compiler
ARM HPC 4=8 ARM Performance Libraries [< O ¢ ¢ ¢ ¢ >
tools
I | ARM Code Advisor (Beta) ‘ARM Code Advisor (Full release)
I ARM Instruction Emulator
4= Allinea DDT and MAP :
Rogue Wave TotalView
ISV softwareq-. NAG Library & Compiler W Rog ISV software
@ PathScale ENZO
2016 2017 Future
10 ©ARM 2017 ARM

Open source in the ARM HPC ecosystem

= Over the past 12 months many more packages and applications have been
successfully ported to ARM HPC

Open\VFOAM
GROMACS::e

MD

Scalable Molecular Dynamics

(O Geant4

I ©ARM 2017 ARM

Linux / FreeBSD w/ AARCH64 support

©Odebian === ubuntu®

12.04LTS & 14.04LTS € Also 14.10 & 15.04 rel
Debian 8 adds AARCH64 — April 2015 04LTS & 14.04LTS < Also releases

fedorc).9 —

Fedora 22 released — May 2015

%,
M

R0
%l

JL

redhat B CentOS

Red Hat Enterprise Linux Server for ARM CentOS Linux 7 for AArché4

o '

Fedora 23 released — Nov 2015 7.2 BETA —Sept, 2015 GA — August 2015
openSUSE SUSE
OpenSUSE 13.2 — Nov 2014 SUSE Launches Partner Program to Bring
SUSE Linux Enterprise 12 to 64-bit ARM
July 2015 @ ISC

Free BSD < Engaged with FreeBSD foundation / Semi-half & Cavium to get FreeBSD on ARMv8
FreeBSD Beta version demo’d by Semihalf — Nov. 2015

12 ©ARM2017 ARM

HPC filesystems

Software ___status [}

LUSTRE Ported

HDFS -~ O 2eeGFS
CEPH Ported Q P
(v inElalala)
@ Fhﬂi—’s -

BeeGFS Ported Ceph

I3 ©ARM20I17 ARM

14

Workload and cluster managers

IBM LSF
HP CMU

SLURM
Adaptive Computing (Moab)

Altair PBS Works
Openlava (LSF port)

©ARM 2017

Ported
Ported

Ported

Future
Ported

Ported

[]
o
» a°@@0 O
@@,}@ ¢

)
00503

workload manager

O PBS Works:

openlava

Open Source Workload Management

ARM

Compilers

I5 ©ARM2017

Open source and commercial compilers

~_n GCC = PathScale
o\ = C,C++, Fortran % = C,C++ Fortran
= OpenMP 4.0 Path = OpenACC
= OpenMP 4.0
= LLVM o * NAG
= C,CH++ nag = Fortran
= OpenMP 3.1, (4.0 coming soon) = OpenMP 3.1

= Fortran coming QI 2017

@ ~ M - ARM C/C++ Compiler
N - LLVM based

= |ncludes SVE
6 ©ARM2017 I ARM

ARM C/C++ Compiler

Commercially supported C/C++ compiler for Linux user-space HPC applications

LLVM-based

= ARM-on-ARM compiler
= For application development (not bare-metal/embedded)

Regularly pulls from upstream LLVM, adding:
= SVE support in the assembler, disassembler; intrinsics and autovectorizer
= Compiler Insights to support ARM Code Advisor

OpenMP

= Uses latest open source (now ARM-optimized) LLVM OpenMP runtime

= Changes pushed back to the community

17 ©ARM2017 ARM

ARM C/C++ Compiler — usage

= To compile C code:

% armclang -03 file.c -o file

« To compile C++ code:

% armclang++ -03 file.cpp -o file

18 ©ARM2017 ARM

19

Common armclang options

For —oerpin

-—-help

——vSsn
——version

-O<level>

-0 <file>
—-fopenmp
-S

©ARM 2017

Describes the most common options supported by
ARM C/C++ Compiler

Displays version information and license details

Specifies the level of optimization to use when compiling source files.
The default is -00

Performs the compilation step, but does not perform the link step.
Produces an ELF object . o file. Run armclang again, passing in the

object files to link
Specifies the name of the output file
Use OpenMP

Outputs assembly code, rather than object code. Produces a text . s file
containing annotated assembly code

ARM

20

LLVM OpenMP development

We have been contributing
ARM-related upstream patches
to LLVM’s ‘libomp’

Example shown here is the Lulesh
benchmark at size=80 running on
|-96 cores

GCC has slightly better serial
performance

Zones per second

libomp demonstrates superior

scali ng 0 16 32 48 64 80 96

. Number of threads
= Even when used with GCC!)
AGCC + GOMP ®GCC + OMP XLLVM + OMP

©ARM 2017 ARM

Parallelism to enable optimal HPC performance

= OpenMP
" We are adding enhancements to the LLVM OpenMP implementation to get better
AArch64 performance
= ARM is active member of the OpenMP Standards Committee

= OpenACC

= PathScale and PGl are strong supporters of OpenACC
= supported for ARM within ENZO

= Auto-vectorization
= ARM actively works on vectorization in GCC and LLVM, and encourages work with
vectorization support in the compiler community.
= PathScale’s compiler has vectorization support built in

= MPI parallelism “just works”

= Better Infiniband driver support is coming from Mellanox
21 ©ARM 2017 ARM

Libraries

22 ©ARM2017

23

[ENTENIEE - now on ARM

OpenHPC is a community effort to provide a
common, verified set of open source packages for
HPC deployments

ARM’s participation:
= Silver member of OpenHPC

= ARM is on the OpenHPC Technical Steering
Committee in order to drive ARM build support

Status: 1.2.0 release out now
= All packages built on ARMv8 for CentOS and SUSE

= ARM-based machines are being used for building
and also in the OpenHPC build infrastructure

©ARM 2017

Functional Components include
Areas

Base OS

Administrative
Tools

Provisioning
Resource Mgmt.
I/O Services

Numerical/Scientifi
c Libraries

I/O Libraries

Compiler Families
MPI Families

Development
Tools

Performance
Tools

RHEL/CentOS 7.1, SLES 12

Conman, Ganglia, Lmod, LosF, ORCM, Nagios, pdsh,
prun

Warewulf
SLURM, Munge. Altair PBS Pro*
Lustre client (community version)

Boost, GSL, FFTW, Metis, PETSc, Trilinos, Hypre,
SuperLU, Mumps

HDF5 (pHDF5), NetCDF (including C++ and Fortran
interfaces), Adios

GNU (gcc, gt++, gfortran)
OpenMPI, MVAPICH2

Autotools (autoconf, automake, libtool), Valgrind,R,
SciPy/NumPy

PAPI, Intel IMB, mpiP, pdtoolkit TAU

ARM

24

Open source library AArché4 inbuilt tuning work

ARM actively working with the community for increased support and performance
= OpenBLAS

= ARMVS8 kernels included
= BLIS

= BLIS developers have close relationship with ARM
= BLIS supports various ARM processors by default (e.g. ARM Cortex-A53, Cortex-A57 CPUs)
= Also currently conducting ARM big.LITTLE development

= ATLAS

= Work ongoing with ARM Research team
= Cortex-A57/A53 patches went into ATLAS

. FFTW
= Just works. NEON options built into v3.3.5

©ARM 2017

ARM

Commercial library support

Product availability for 64-bit ARMv8-A

= ARM Performance Libraries
= See following slides

= NAG Library

= Largest commercially available collection of humerical and statistical algorithms
= > 1800 functions

= Scales well, takes advantage of ARM Performance Libraries

= Tested on Juno (ARM) and ThunderX (Cavium)

= PathScale BLAS implementation
= Comes with their ENZO compiler

25 ©ARM2017 ARM

ARM Performance Libraries

Commercial 64-bit ARMv8 math libraries
= Commonly used low-level math routines - BLAS, LAPACK and FFT

= Validated with NAG’s test suite, a de-facto standard Performance on par
with best-in-class math libraries

®

Best-in-class performance with commercial support

= Tuned by ARM for Cortex-A72, Cortex-A57 and Cortex-A53

= Maintained and Supported by ARM for a wide range of ARM-based SoCs
= Regular benchmarking against open source alternatives

S

Commercially Supported

by ARM
Silicon partners can provide tuned micro-kernels for their SoCs
= Partners can collaborate directly working with our source-code and test g
suite Q
= Alternatively they can contribute through open source route Validated with

NAG test suite

26 ©ARM2017 ARM

ARM Performance Libraries

Version 2.0: Improving performance and interoperability R S S
BLAS ﬁ,/ﬁ

= Enhanced parallelism for BLAS level | |
= Hand-tuned kernels for BLAS level 3 |

40

\ 4

ntage of peak perform

Percel

20

Serial ——

LAPACK (3 '6' I) 0 0 1(;00 2(;00 3(;00 4OIOO 5().00 6(;0:-Cor:(;;_8000
= Added PLASMA-style Directed Acyclic Graphs for better 120000 —
par‘allelism 100000 |
FFTW Interface .
= Support for FFTW-compatible basic and advanced DFT interfaces g
Scalable Vector Extensions o000 |
« Libraries built with SVE-capable compilers . L Laesi(OAS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

» Hand-written DGEMM and SGEMM kernels Matrx dimension, N
27 ©ARM 2017 ARM

28

ARM Performance Libraries — micro-architecture

= ARM cores have a variety of designs,
created by both ARM and our partners

= ARM Performance Libraries are creating
tailored versions of routines to target
these different micro-architectures

= It is important to ensure that the correct
version is installed on your system

= For example consider the different
performance in DGEMM running the
Cortex-A53 and Cortex-A57 kernels on
the right and wrong cores...

©ARM 2017

Performance (GFLOPS)

4000

3500

3000 f

2500

2000

1500 |

1000 f

500

\/

A53 kernel on A53 =———
A57 kernel on A53 ——— -

A53 kernel on A57
A57.kernel on A§7

800 1000
Matrix size M=N=K

1200

ARM

29

ARM Performance Libraries — linking

In order to compile applications using BLAS, LAPACK and FFT routines from
the ARM Performance libraries, four options are provided:

= Serial and OpenMP builds

= 32-bit and 64-bit integers

These translate into four binaries in /opt/arm/armpl-*/1ib/

= libarmpl.a = libarmpl int64.a
= libarmpl mp.a = libarmpl int64 mp.a

Shared libraries (1ibarmpl*. so) are also provided

Compile and link using, for example

armclang -03 file.c —-fopenmp -c file.o -I${ARMPL DIR}/include

armclang -03 file.o —fopenmp -o file -L${ARMPL DIR}/lib -larmpl mp

©ARM 2017

ARM

Scientific Computing on ARM
Part 2

Chris Adeniyi-Jones
Principal Engineer, Software and Large-Scale Systems
ARM Research

Linaro Connect - Budapest
Thursday 9t March 2017

©ARM 2017

Debuggers

31 ©ARM 2017

Open source debugging tools

= All the usual open source tools you would use for debugging work as expected
on ARMv8
= printf()
= gdb
= valgrind (and its associated tools)

= It is worth ensuring that the versions on your system are recent

= Check Linaro webpages for up to date source

32 ©ARM20I7 ARM

TotalView for HPC

= Common HPC debug environment

QtThreadExample - Process 1, Thread 1.3 (Breakpoint) - CodeDynamics 2015X - o

Fle Edit Group Process Thread Debug Window Help

= Active development for 30+ years

= Thread specific breakpoints 5o o|me b e 7
= Control individual thread execution e
= View thread specific stack and data e 1 : - 7
= View complex data types easily SRR s 3 . s

= Track memory leaks in running applications .

+ Supports C/C++ on Linux e e 1

= Allowing the business to have 1 | E—r
= Predictable development schedules m |!|_ e
= Less time spent debugging

s: QtThreadExample (1) Thread: 1.3 - Breakpoint Frame: Worker::doWork File: /home/bburns/Downloads/QtThreadExample/worker. cpp

= ARM support
= Beta just concluded
= Early access available November 2016 — version 2016.07

= Full release planned for Feb 2017 — version 2017.1
©ARM 2017 ARM

Allinea DDT

The debugger for C, C++ and Fortran threaded and parallel code

* Who had a rogue behaviour?
sses | Funch Locals | CurentLine(s) | Currem Stk |
50120 E_start 4| [current Linets) 8 x

Variable Name |Vﬂ|ue |

= Merges stacks from processes and threads .

* Where did it happen?

Allinea DDT | ¢ comaticall Parallel stack A‘iﬁ;’nr:‘;:fi‘:odnata Parallel array
- inea eaps to source automatica : :

* How did it happen?

“mpe] \\II\\II&\I

= Detailed error message given to the user

Cunevawp‘AH 4 [Focuson curent @ Group) Process () Thread | | &
200004 processes (0:200003) Paused: 200004 Running: 0

= Some faults evident instantly from source ’ G

Create Group §

" Why did it happen? Step, play, and

breakpoints

= Unique “Smart Highlighting”

Offline
debugging
= Sparklines comparing data across processes

34 ©ARM20I7 ARM

ARM debugging gotcha

Weakly ordered memory model

= Weakly ordered memory access means that changes to memory can be applied
in any order as long as single-core execution sees the data needed for program
correctness

= Most parallel HPC codes we encountered used GCC’s libgomp (-fopenmp)
= These behaved correctly on AArché64 using GCC 5.2

= Some HPC codes we have come across have their own bespoke parallelization
= Usually based directly on top of pthreads
= Written to have more control over the threads of execution and how they synchronize
= Problems are almost always down to a lock-free thread interaction implementation

Thread 0 Thread |
A=1;
set=2; if (set==2) C = A;

35 ©ARM20I7 ARM

Profilers

36 ©ARM20I7

Performance hints

= Use latest compiler version, not OS default

- Use OMP_PROC_BIND=TRUE
= Make sure you use OMP_PLACES if doing more than one run

37 ©ARM20I7 ARM

Profiling — always important!

= Challenges

= One (non-ARM) customer came to Allinea with help getting their code working better

* Huge speed up on CONVERGE: from 2h down to 4 sec

= Now possible to run jobs efficiently on hundreds of cores

* Now possible to scale up from 2 million to 20 million nodes

Full case study:

http://www.allinea.com/news/201509/convergent-science-
ignites-combustion-simulation-performance-allinea-forge

38 ©ARM20I7 ARM

39

Open source tools ported to ARM HPC

Profiling/debugging tools

and “just work”

Tested applications include:
PAPI and Perf counters
Score-P. Cube, Scalasca

MPE and Jumpshot

TAU

©ARM 2017

[(=](=][]

Metric: P_WALL_CLOCK_TIME
alue: Exclusive

std. dev,
mean

net 0,00
nct 1,00
nct 2,00
n,.t 3,0,0
net4,0,0
nc15,0,0
et 6,00
net 7,00
n,c,t 8,00
nct 9,00
n,ct10,0,0
nct 11,00
n.ct12,0,0
nct13,0,0
n,ct 14,0,0
n,ct15,0,0

I

File Display Topology Help

KBS K e

[Absolute

52] [Absolute

52] [Absolute

O

l Metric tree

Call tree Flat view

I System tree I! Box Plot I H T4

&+ (] 0.00 Time (sec)

[3496.10 Execution

1.00 Overhead

[1861.46 Idle threads

3.06e6 Visits (occ)
&+ [64 Synchronizations (occ)
&+ [8.48e4 Communications (occ)
G+ [1.85e9 Bytes transferred (bytes)
Computational imbalance (se

-

i)

£ [0.24 bt

&+ [2.01 mpi_setup

- [0.08 MPI_Bcast

&+ [l 0.04 env_setup

- @ 0.00 zone_setup

&+ [0.03 map_zones

- [0.00 zone_starts

- [0.00 set_constants

&+ [9.81 initialize

&+ [2.98 exact_rhs

&+ [l 0.74 exch_gbc

13.85 copy_x_face

12.14 copy_y_face
0.51 MPI_Isend
0.31 MPI_Irecv
602.40 MPI_Waitall

2839.54 adi

- O 4.46 MPI_Barrier

&+ [6.91 verify

- [0.05 MPI_Reduce

G

»

[»]

g

B [- 1BM BG/P
& [J - ROO-MO-NO

Bt [- Process 0

|- @ 41.29 Thread 0
- @ 41.26 Thread 1
- 0 41.26 Thread 2
L [41.26 Thread 3
B[- Process 1

- [33.53 Thread 0
- @ 33.49 Thread 1
- [33.49 Thread 2
L [33.49 Thread 3
& [- Process 2

- [32.38 Thread 0
0 32.35 Thread 1
- [32.35 Thread 2
- [32.35 Thread 3
& [- Process 3

- [26.65 Thread 0
I [26.62 Thread 1

(I

»

D)

2839.54 (81.22%)

41.29 (1.45%) 2839.

54

|0.00 3496.10 (65.24%)

5358.56 |o‘oo

3496.10 Io‘oo

—
==S=—=c=

— “ARM

ARM Code Advisor (Beta)

Combines static and dynamic information to produce actionable insights

Performance Advice

ARM Code Advisor x|+

= Compiler vectorization hints € 0 ancrigmmanntmes | €| Q s B U e a4m =
e . ARM CODE ADVISOR®™ g . 2 ©
= Compilation flags advice e s
. page [JEIl of 1

= Fortran subarray warnings o
= OpenMP instrumentation s e
Insights from compilation and runtime
= Compiler Insights are embedded into the application [EEa—

binary by the ARM Compilers -
= OMPT interface used to instrument OpenMP runtime &S etz s i

loop

Extensible Architecture

= Users can write plugins to add their own analysis information
= Data accessible via web-browser, command-line,and REST API| to support new user interfaces

40 ©ARM2017 ARM

ARM Code Advisor (Beta)

Typical workflow

Compiled

Source .
Code —) Compile A 4 Profile

+Insight

l

Runtime
Profile

|

Analyze

41 ©ARM 2017 ARM

42

ARM Code Advisor — usage

Compile application with Insight functionality:

o

% armclang++ -03 -insight file.cpp -o file
Run code:

o

% armcadvisor collect ./example
Starting collection of program [./example] to
profile temp in /home/userl/armcadvisor-profiles

Analyze collected data:

o

% armcadvisor analyze example
Generating analysis file, armcadvisor.advice

View analysis:

o

% armcadvisor web —--network --everyone -p 2010
Open your browser to one of:

http://server.arm.com:8080
©ARM 2017 http://127.0.0.1:8080

ARM

ARM Code Advisor — video

ARM CODE ADVISOR®*™
Project Summary

Top 3 Impactful Pieces of Advice

There were 1294 invocations using 8 Ngpeads Total

0 Parallel Regions information
wallclock time was 16.80s Analysis caught 100% of

Parallel Regions information
There were 135870 invocations using 8 threads Total
wallclock time was 9.23s Analysis caught 50% of execution

Parallel Reglons information
o There were 1294 Invocations using 8 threads Total

wallclock time was 5.73s Analysls caught 100% of

Open Project

43 ©ARM20I17 ARM

ARM Allinea MAP

hemelb_512p_2014-02-08_10-18.map - Allinea MAP 4.2-34164 [Trial Version]

Low overhead measurement ottt 53 e
Profiled: hemelb on 512 processes Started: Sat Feb 8 10:18:36 2014 Runtime: 308s Time in MPI: 58%

 Accurate, non-intrusive application e — —
:w mun::ry m:;:.l“ Sha 0 - 117891 (657 avg) . i
oy performance profiling N e —————y

S0 4aw)

foating point vector (%) % L) . 0 . = - 5 - -
:?? F:L:;‘z:l%{m lmm\:‘]\mm MWW; o S e a m I e SS e n o r'e Co m p I I at I o n O r re I I n kl n g 10:18:36-10:23:43 (307.730s): Mean: Memory usage 108.3 M; MPI call duration 65.7 ms; CPU floating-point 10.6 %;
H StepM: th % | @ IteratedAction.cc 3 | @ StepM: .cc %
required R ——

57 Action(Concern &concern, MethodLabel method) :
58 @ concern(&concern), method(method)
59 {
asy 10 use . ’
61 Action(const Action & action) :
62 & concern(action.concern), method(action.method)
63
. . . 64 }
° t 658 bool Call()
Source code viewer pinpoints . :
94,7 R return concern->CallAction(method);
. 68 } o
ottieneck locations & v
70
o . . 71 typedef std::map<steps::Step, std::vector<Action> > Registry;
- Zoomin t I terat 7
oom In 10 expiore Iterations, oo
. 74 * Construct a step manager]
75 * @param The number of phases, default 1.
u nC IOnS an oops 76 * @param timers, Record the times for the steps to this timers object, if given
77 */
78 StepManager (Phase phases = 1, reporting::Timers * timers = NULL, bool separate concerns = false);
79
A Dee Input/Output | Project Files | Parallel Stack View |
Parallel Stack View
" ' [Time A MPI Function(s) on line Source
; 1.4% 0.1% hemelb::net::IteratedActi... RequestComms();
15% 1 El
& Call [inlined] CallActionsForStep(static_cast<steps::Step>(step), 0);

« Measures CPU, communication, 1/0 and
memory to identify problem causes e ham mte

<0.1%
<0.1% Ll

 |dentifies vectorization and cache Bt '

0.2%]

pe rfo rI I I a n Ce Showing data from 512000 samples taken over 512 processes (1000 per process)

44 ©ARM2017 ARM

return concern->CallAction(method);
EndIteration();
propertyriter->Write(sinulationState. GetTineStep());

... localPropertyOutputsoutputNumber] ->Write((uint64_t) iterationNumber);
MPI_STATUS_IGNORE);

Energy efficiency with ARM’s Allinea tools

Energy

A breakdown of how the 3.6 Wh was used:
Fle Edit View Metrics Window Help

Profiled: hydro on 16 pr . 2 nodes S from: Thu jul 9 10:32:13 2015 for 164.9s CPU 62.9% -
Main thread activity
System 27.1% W

cPU p bl " — w——— " "— — — —
37.1 Winode I

Mean node power 92.4 W [N

System p
73.3 Winode

Peak node power 94w IS

10:33:01-10:33:36 (34.797s. 21.1% of total): Main thread compute 0.3 %, OpenMP 21.7 %, MP| 64.7 %, File VO 12.6 %, OpenMP overhead 0.5 %. Sleeping ¢ Significant energy is wasted during MPI communications. It may

* main.c 3 be more efficient to use fewer nodes with more data on each

280 2 £ ((H.nstep % 2) == 0) { n |
B mf!mi!!ﬁ:ml‘ai H, &y, &Hw_godunov, &rvw godunovl: node.

282 7] ydro_godunow(2. at. H. &Hv, &Hw, &Hvw):

283 = } else ¢ ~ . ~ R o .
13.9%. . . 28a hydro_ godunow(2. dt. H. &V, &Hw_godunov, &Hvw_godunov): Significant time is spent waiting for memory accesses. Reducing

the CPU clock frequency could reduce overall energy usage.

ENERGY
EFFICIENT

APPLICATIONS

45 ©ARM2017 ARM

Allinea Forge: what’s new in 7.0 — examples

File Edit View Metrics Window Help

Profiled: clover leaf on 32 processes, 4 nodes, 32 cores (1 r process) Sampled from: for 309.1s

r— _

Iterations / s
3.88 /s

Grind time
17.0 ns

Step time
0.28 ps

26.0

Hide Metrics...

o
17.5

IR IR

Flle EQit view Memics Window Heip

A LI
309.138s: Main thread compute 0.2 %, OpenMP £0.0 %, MPI 19.7 %, OpenMP overhead 0.1 %, Sleeping © %

Zeemd

Profiled: clover leaf on

Application activity

Lustre read transfer

0 B/s

32 processes, 4 nodes, 32 cores (1 per process) Sampled from: for 408.1s

o

Hide Metrics...

o
Lustre write transfer dad I_
1.61 MB/s L | !“l»)
S

o
Lustre metadata operations 2°-8

0.06

Lustre file opens
0.03

247.314s, 60.

46 ©ARM!

o
29.8

PAPI

PAPI Total Cache Misses (derived)
Mean level 2 cache misses 37.5%
Peak level 2 cache misses 99.6%
Mean level 3 cache misses 40.9%

1
[
Peak level 3 cache misses 20.7%

0.0 %, OpenMP overhead 0.1 %, Sleeping 1= %Zoom &1 :=

PAPI metrics in PR

Custom metrics in MAP

Lustre metrics in MAP

ARM

Quantify gains immediately

CPU

A breakdown of the ©4.6% CP
Scalar numeric ops 11.7% |
Vector numeric ops 0.0% |
Memory accesses 88.2% [N

Waiting for accelerators 0.0% |
The per-core performance is memory-bound. Use a profiler to
identify time-cons) : o I : -

No time is spent i EI’IEI’gy
vectorization advi

— A breakdown of how the 3.6 Wh was used:
CPU 62.9% Il

System 37.1%
Mean node power 92.4 W [
Peak node power 94w IS

Significant energy is wasted during MPI communications. It may
be more efficient to use fewer nodes with more data on each
node.

Significant time is spent waiting for memory accesses. Reducing

Accelerators the CPU clock frequency could reduce overall energy usage.

A brealkdown of ho
GPU utilization

Global memory accesses
Mean GPU memory usage 0.0% |

Peak GPU memory usage 0.0% |

GPUs are available but are not used. Identify suitable hot loops with
a profiler and try offloading them to the accelerator.

The peak device memory usage is low. It may be more efficient to
offload a larger portion of the dataset to each device.

47 ©ARM20I7

CPU

A brealkkdown of the 70.2% CPU time:
Scalar numeric ops 2.5% |

Vector numeric ops 0.0%

|
Memory accesses 39.7% 1WA

Waiting for accelerators 51.7% [
Most of the time is spent waiting for accelerators. Use
asynchronous calls to overlap CPU and accelerator workloads.

The per-core perform
identify time-co

A breakdown of how the 2.84 Wh was used:

CPU 28.4% N
System 71.6% A
Mean node power 163 W IS
Peak node power 175.8w S

Energy usage appears to be optimal.
e —

Accelerators
A breakdown of how accelerators were used:
GPU utilization 92.5% N

||

1

Global memory accesses 40.4%
Mean GPU memory usage 9.6%
Peak GPU memory usage 15.2%

Significant time is spent in global memory accesses. Try modifying
kernels to use shared memory instead and check for bad striding
patterns.

The peak device memory usage is low. It may be more efficient to
offload a larger portion of the dataset to each device.

ARM

ARMv8-A

Scalable Vector Extension

Introducing the Scalable Vector Extension (SVE)

A vector extension to the ARMv8-A architecture; its major new features:
Gather-load and scatter-store

Per-lane predication

Predicate-driven loop control and management

Vector partitioning and SW managed speculation

Extended integer and floating-point horizontal reductions

SVE is not an extension of Advanced SIMD

= A separate architectural extension with a new set of A64 instruction encodings
= Focus is HPC scientific workloads, not media/image processing

49 ©ARM2017 ARM

50

What'’s the vector length?

= There is no preferred vector length

= Vector Length (VL) is hardware choice,
from 128 to 2048 bits, in increments of 128

= Does not need to be a power-of-2

= Vector Length Agnostic programming adjusts
dynamically to the available VL

= No need to recompile, or to rewrite hand-
coded SVE assembler or C intrinsics

= Has extensive implications for loop
optimizations

©ARM 2017

VL

128b

256b

384b

512b

64

128

128 256
128 256 384
128 256 384

512

ARM

SVE Compiler status

ARM C/C++ Compiler has SVE capabilities built in

We have a public snapshot of our LLVM changes
= https://github.com/ARM-Software/LLVM-SVE
= These are being incrementally upstreamed into the main LLVM codebase

We have started upstreaming our GCC changes

Changes to GNU binutils are already upstream

For more details of SVE usage see our blogs and whitepapers

https://www.community.arm.com/processors/b/blog/posts/technology-update-the-scalable-vector-extension-sve-for-the-armv8-a-architecture

https://cms.developer.arm.com/-/media/developer/developers/hpc/white-papers/a-sneak-peek-into-sve-and-vla-programming.pdf

©ARM 2017 ARM

Compiling with SVE

= To compile C code:

o

% armclang -03 -march=armv8-a+sve file.c -o file

« To compile C++ code:

armclang++ -03 -march=armv8-a+sve file.cpp -o file

52 ©ARM2017 ARM

ARM Instruction Emulator

Run SVE binaries at near native speed on existing ARMv8-A hardware

Trap-and-emulate of illegal userspace
instructions ARMV8 Binary ARMV8 SVE Binary
= Natively supported instructions run at full speed e v
= Unsupported instructions are faithfully emulated in — —
software - -
~
2
Full integration with ARM Code Advisor - -
y y
* Plugin allows ARM Instruction Emulator to provide - "% Converts unsupported
L] . .
hotspot information and other metrics r - SVE '“:;\“;It';f: to
— native v8-
* Command-line integration allows ARM Code Advisor = :: instructions
workflows to seamlessly integrate with ARM - =
| L]
Instruction Emulator — L
=)

—

.y
= ARMV8-A ==

53 ©ARM2017 ARM

Running with ARM Instruction Emulator (1)

= To run SVE compiled code:

% armie --vector-length 256 ./example

= To list valid vector lengths:

$ armie --list-vectors
128 256 384 512 640 768 890 1024 1152 1280 1408

1536 1664 1792 1920 2048

54 ©ARM2017 ARM

ARM Code Advisor with SVE

= Compile code with Insight as before

o

% armclang -03 -march=armv8-a+sve -insight file.c -o file

= Run the executable using both ARM Code Advisor and ARM
Instruction Emulator

o

% armcadvisor collect --armie --vector-length 256 \

“./lulesh2.0 -s 15”

= Analysis and visualization stages as before

55 ©ARM2017 ARM

Final thoughts

ARM HPC in 2017

The software ecosystem has matured significantly in the past two years

= Commercial compilers, libraries, debuggers and profilers are all now available to
complement open source projects

= Users will notice very few hurdles to migrating codes as programming
environments are very familiar

= ARM HPC hardware continues to appear from many partners with small proof
of concept systems turning into bigger systems

= SVE machines will only enhance performance further

57 ©ARM20I7 ARM

Developer website : arm.com/hpc

ARM launched an HPC-specific microsite —
home to our HPC ecosystem offering:

Technical reference material

How-to guides

Latest news and updates from partners
Links to downloads of HPC libraries
Third-party software recommendations

Web forum for community discussion and
help

00
=l

58 ©ARM2017

ARM

ARM HPC Products from arm.com/hpc

Supported, Integrated and Performant, available now

ARM Compiler for HPC ~ ARM SVE Compiler for HPC ~ ARM Code Advisor Beta

= ARM C/C++ Compiler = ARM C/C++ SVE Compiler * ARM Code Advisor
* ARM Performance Libraries * ARM SVE Performance Libraries = ARM C/C++ Compiler
= GCC6.0 = GCC6.0 = gfortran with LLVM OpenMP

for ARM Code Advisor
= ARM Instruction Emulator

= GCC for SVE with LLVM OpenMP

59 ©ARM2017 ARM

Summary of today

Overview of the state of the ARM HPC Ecosystem

Introduced to commercial HPC tools developed by ARM and ecosystem partners

Visit arm.com/hpc for more information and tool access

©ARM 2017 ARM

http://www.arm.com/hpc
ARM

Contact: hpc@arm.com

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited
(or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be
trademarks of their respective owners.

Copyright © 2017 ARM Limited

©ARM 2017

Practical

62 ©ARM2017

Session |

Using Linaro Developer Cloud instances
Username Password Work-Node

useroo a50ciKTy node-0
ssh usereQ@64.28.99.111 # Login to the login server
ssh node-0 # then login to a worker node

Files describing the hands-on are in your home directory:
session_1.txt session_1.pdf

Run this on your local machine to copy the session info file:
SCp user@owe4.28.99.111:/home/user@@/session 1l.pdf session_1.pdf

63 ©ARM2017 ARM

Session 2

Using Linaro Developer Cloud instances
Example Username Password Work-Node

useroO ab5ociKTy node-0
ssh usereQ@64.28.99.111 # Login to the login server
ssh node-0 # then login to a worker node

Files describing the hands-on are in you home directory:
session_2.txt session_2.pdf

Run this on your local machine to copy the session info file:
SCp user@owe4.28.99.111:/home/user@@/session 2.pdf session 2.pdf

64 ©ARM2017 ARM

