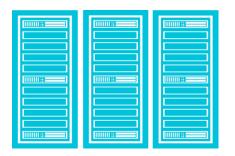
Designing security into low cost IoT systems

ARM

Jim Wallace
Director, SSG Marketing

Linaro Connect, Bangkok 2016 8th March 2016



From Sensors to Servers

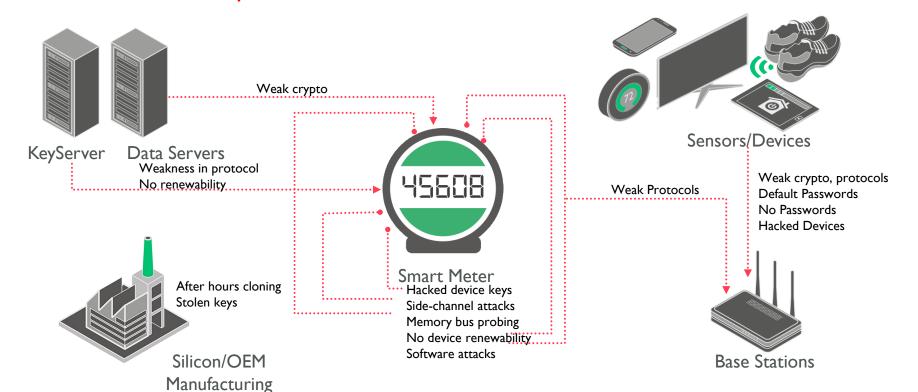
System Security

Productivity

Connectivity

Security

Management



Efficiency

IoT is going everywhere

Risks are hard to predict

IoT - From Cortex-M to Cortex-A class devices

Ultra-low cost

BBC micro:bit BT Smart beacon

Rich BT Smart Thread node

WiFi node Gateway

Intelligent

ARMv6-M ARMv8-M Baseline

ARMv8-M Mainline ARMv7-M with MPU Cortex-A Class

Connected

TRNG + Crypto

TRNG + Crypto + GPU + VPU

BT Smart

Device HW Resources

IP + TLS mbed OS uVisor Management Security Firmware OTA

IP + TLS **OP-TEE**

Device SW Capabilities

Management Security Firmware over-the-air Rich UI/Multimedia

mbed OS / RTOS

Linux / Rich OS

Secure

Evolution of IoT driving need for generic devices

- Local intelligence enables:
 Camera/microphone/other sensors
 - Raw data does not need to be sent to the cloud, only processed metadata is being sent
 - Reduced data bandwidth, transfer overhead and processing latency to/from cloud
 - Increased security

Security in IoT end points

Device security

- Device integrity
 - Protect from untrusted S/W
 - Allow recovery from attack

- Asset protection
 - Prevent access to certain resources

- Data security
 - Keep data confidential
 - Prevent data alteration

- Physical Security
 - Anti-tampering

Communications security

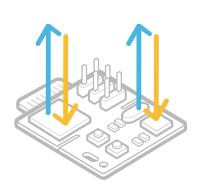
- Link encryption
 - Prevent eavesdroppers listening

- Authentication
 - Identity of endpoint / server

Management security

- Device management
 - Support for bootstrapping / provisioning / Behaviour monitoring...

Keep firmware up-to-date



Security must be built into all stages of the system

Management security: mbed Device Connector

- mbed Device Connector eases development, management and scaling of IoT
- Available at https://connector.mbed.com
- Management security implemented via standards such as OMA LWM2M

ARM mbed*

Integrated Device Connector British

My environment

Wy devices

Or per hour

An Committed

Or per hour

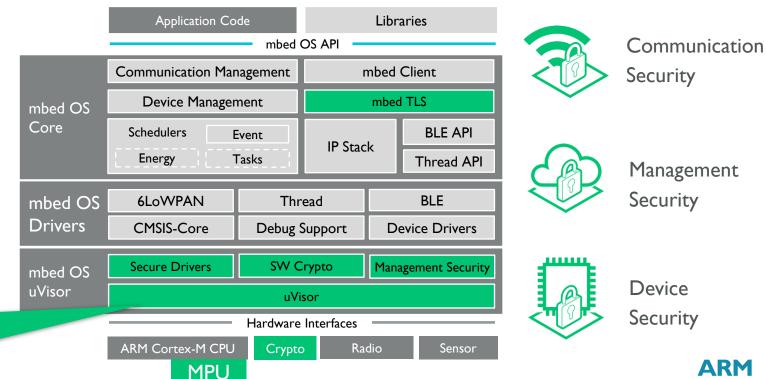
Access keys

Or per hour

Build IoT Device

Connect your devices

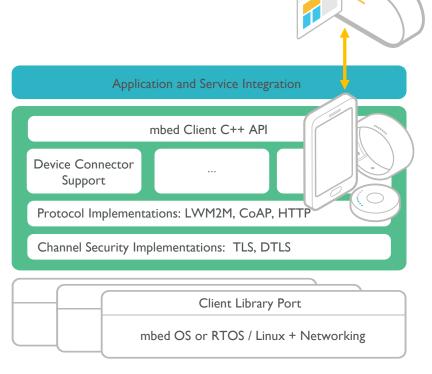
Build application with example code


Utilize cloud solutions

mbed OS 15.11

- mbed OS is a modular, secure, efficient, open source OS for IoT
- Connects to mbed Device Connector

ARM


uVisor

secure

isolation

mbed Client

Connects to mbed Device Connector

- Included as part of mbed OS, also portable to other platforms including Linux and third party RTOS
- Implements protocols and support for securely publishing resources (e.g. sensor data), and managing the device from the cloud

Communication security: mbed TLS

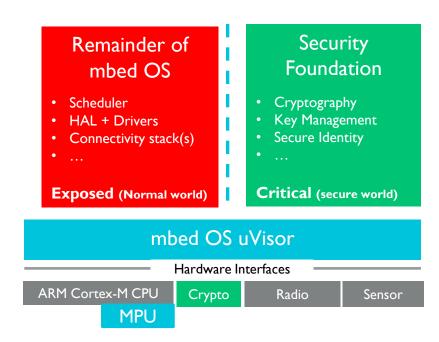
- Fully-fledged SSL / TLS / DTLS Library
- Developer friendly: Clean API and documentation
- Open Source under Apache 2.0 license at https://tls.mbed.org/
- Suitable for use on Cortex-M and Cortex-A processors based targets

Transport Security	Symmetric Encryption	Public Key Algorithms	Hash Algorithms	Random Number Generation	X.509 Certificate Handling
TLS/DTLS, etc	AES, etc	ECDHE, ECDSA, etc	SHA, etc	Entropy pool, CTR_DEBUG, etc	•

Known vulnerabilities

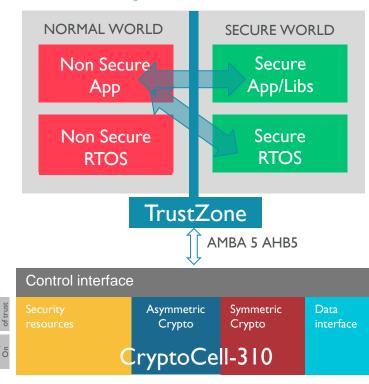
CVE stands for Common Vulnerability and Exposures. A CVE Identifier is a unique number that can be used over different security advisories by different vendors to refer to the same issue. The following CVE identifiers are known to involve mbed TIS and PolarSSI:

mbed TLS / PolarSSL Advisory	CVE Identifier	Issue title	Fixed in
2011-01	CVE-2011- 1923	Possible man in the middle in Diffie Hellman key exchange	0.14.2, 1.0.0
2011-02	CVE-2011- 4574	Weak random number generation within virtualized environments	1.1.0
2012-01	CVE-2012- 2130	Weak Diffie-Hellman and RSA key generation	1.1.2
2013-01	CVE-2013- 0169	Lucky thirteen - timing side channel during decryption	1.1.6, 1.2.6
	CVE-2013- 1621	Denial of Service in SSL Module	1.2.5
2013-02	Unknown	RC4 ciphersuites in SSL and TLS vulnerable	Not solvable
	CVE-2013- 1622	False warning, not an issue in a numbered release.	
2013-03	CVE-2013- 4623	Denial of Service through Certificate message during handshake	1.1.7, 1.2.8
2013-04	CVE-2013- 5914	Buffer overflow in ssl_read_record()	1.1.8, 1.2.9, 1.3.0
2013-05	CVE-2013- 5915	Timing Attack against protected RSA-CRT implementation used in PolarSSL	1.2.9, 1.3.0
2014-01	CVE-2014- 0160	Heartbleed Bug	Not affected
2014-02	CVE-2014- 4911	Denial of Service against GCM-enabled entities	1.2.11, 1.3.8
2014-03	CVE-2014- 3566	POODLE attack on SSLv3	Not affected
2014-04	CVE-2015- 1182	Remote attack using crafted certificates	1.2.13, 1.3.10
2015-01	CVE-2015- 5291	Remote attack on clients using session tickets or SNI	1.2.17, 1.3.14, 2.1.2


https://tls.mbed.org/security

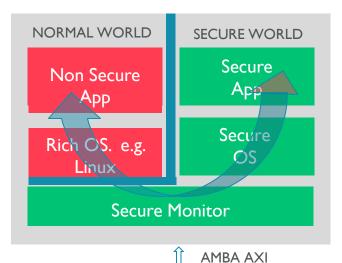
Device security services in low cost devices

- Existing IoT solutions use flat address spaces with little privilege separation
 - Especially on microcontrollers
- Mitigating strategy to split security domains into
 - Exposed code
 - Protected critical code

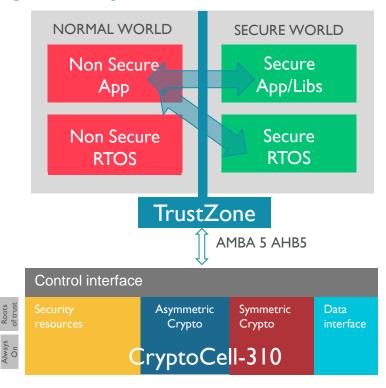


TrustZone for low cost ARMv8-M IoT platforms

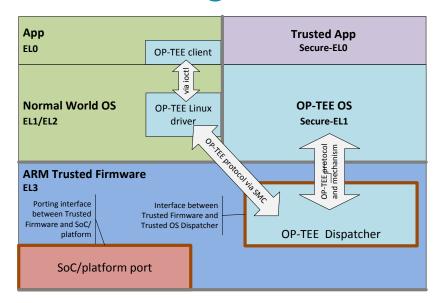
- The ARMv8-M architecture introduces secure and non-secure code execution
 - Code running in non-secure memory can only access non-secure devices and memory
 - Code running in secure memory can access whole address space
- So low cost devices can
 - Have trusted code & Apps in secure memory
 - Can have non trusted applications installed in non secure memory safe in the knowledge that they cannot be used to attack the system
- CryptoCell augments TrustZone
 - Providing a range of security subsystems for acceleration and offloading



Microcontroller


TrustZone technology for every IoT platform

Apps Processor

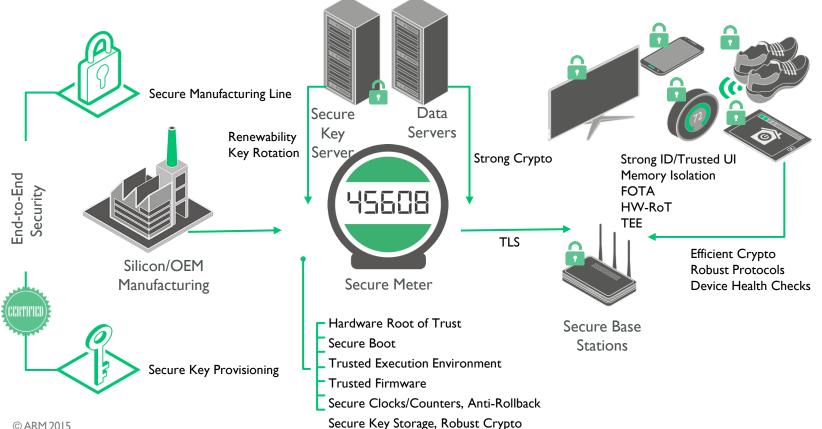

Microcontroller

Trusted Firmware, OP-TEE reduce fragmentation

- Secure World foundations for ARMv8-A:
 - Trusted Board Boot
 - Secure World runtime world switch. interrupt routing, PSCI, SMC handling
 - Open source projects on GitHub https://github.com/ARM-software/armtrusted-firmware https://github.com/OP-TEE
- vI.2 (December)
 - + Trusted Boot baseline features
 - + PSCI v1.0 key optional features
 - + OS vendor alignment
 - GICv3 drivers

SoC supplier		ARM Trusted Firmware	Trusted App supplier	
OS/hypervisor supplier		Trusted OS supplier	Internal TOS interface	

ARM TrustZone CryptoCell


- TrustZone,TEE and CryptoCell provide platform level security
 - with a hardware Root of Trust / Trust Anchor for the system
 - Crypto acceleration
 - TRNG
- Configurable to target application right size
- Enhances usability e.g. time for DTLS handshake & door lock to open
- Simplifies security implementations

LITE using this to enable a security foundation

Imagine a world where...

- From the wide choice of ARM-based devices, you chose the perfect one for you
 - Price, performance, power, form, security etc.
- And what software you ran on it was up to you...
 - Android / Brillo, BSD, CentOS, ChromeOS, RHEL, SUSE, Tizen, Snappy Ubuntu,
 Windows, Yocto/OE, etc ...or something we haven't even thought of yet
- But once you made that choice, it should all just work!
- ARM & Linaro are committed to making this happen

Linaro and ARM providing the foundation for IoT

- ARM working with Linaro to provide an end-to-end open source IoT framework for specific IoT implementations
- ARM part of LITEWG
 - "Place to collaborate on ARM architecture for IoT", enabling
- Software solutions from Cortex-M to Cortex-A based platforms

THANK YOU!

ARM

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

Copyright © 2016 ARM Limited