
Presented by

Date

Event

Data Analytics and
Machine Learning: From

Node to Cluster
Understanding use cases to optimize on

ARM Ecosystem
Viswanath Puttagunta

Ganesh Raju

BKK16-404B
March 10th, 2016

Linaro Connect BKK16

Version 0.1

 Vish Puttagunta
● Technical Program

Manager, Linaro
● DSP (TI C64x) optimizations

(Image / Signal Processing)
● ARM® NEON™

optimizations upstreamed to
opus audio codec

● Data Analysis and Machine
Learning: Why ARM

Ganesh Raju
● Tech Lead, Big Data, Linaro
● Brings in Enterprise

experience in implementing
Big Data solutions

Data Science: Big Picture

Data
Analytics

Machine
Learning

Deep
Learning

High
Performance
Computing
(HPC)

Big Data

Statistics
Lin/Log Reg
KNN, Decision
Trees,PCA...

Software Tools
Python,R..
Pandas, scikit-learn, nltk..
Caffe, TensorFlow..
Spark, MLlib, Hadoop..

Deep
Learning/NN
CNN
RNN..

Data
Science

● Value Prediction

● Classification

● Transformation

● Correlations

● Causalities

● Wrangling...

Overview
● Basic Data Science use cases
● Pandas Library(Python)

○ Time Series, Correlations, Risk Analysis
● Supervised Learning

○ scikit-learn Library (Python)
● Understand operations done repeatedly
● Open discussion for next steps:

○ Profile, Optimize (ARM Neon, OpenCL, OpenMP..) on
a single machine.

○ Scale beyond a single machine
● Ref: https://github.com/viswanath-puttagunta/bkk16_MLPrimer

Goal

● Make the tools and operations work out of the
box on ARM
○ ARM Neon, OpenCL, OpenMP.
○ ‘pip install’ should just work :)

● Why Now? (Hint: Spark)

Pandas Data Analysis (Pandas)

● Origins in Finance for Data Manipulation and
Analysis (Python Library)

● DataFrame object
● Repeat Computations:

○ Means, Min, Max, Percentage Changes
○ Standard Deviation
○ Differentiation (Shift and subtract)
○ ...

Op: Rolling Mean (Pandas)

Op: Percentage Change (Pandas)

Operations: Shift, Subtract, Divide

Op: Percentage Change Vs Risk (Variance)

Op: Correlation (Pandas)

Operations: Mean, Variance, Square Root

Pearson Correlation Coef

Source: https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

Correlation Heat Maps

Linear Regression (Predictor)

Objective: Fit line/curve to minimize a cost function

Linear Regression (Predictor)...

Operations: Gradient Descent: Matrix Transforms/Inverse/Multiplications.

For Lnr Reg, directly reduces to:

Θ = (XTX)-1 XT Y

Source: https://www.youtube.com/watch?v=SqA6TujbmWw&list=PLE6Wd9FR--Ecf_5nCbnSQMHqORpiChfJf&index=16
https://youtu.be/WnqQrPNYz5Q?list=PLaXDtXvwY-oDvedS3f4HW0b4KxqpJ_imw&t=284

https://www.youtube.com/watch?v=SqA6TujbmWw&list=PLE6Wd9FR--Ecf_5nCbnSQMHqORpiChfJf&index=16
https://youtu.be/WnqQrPNYz5Q?list=PLaXDtXvwY-oDvedS3f4HW0b4KxqpJ_imw&t=284
https://youtu.be/WnqQrPNYz5Q?list=PLaXDtXvwY-oDvedS3f4HW0b4KxqpJ_imw&t=284

Logistic Regression (Classification)

Operations: Matrix Transforms/Inverse/Multiplications.
Source: https://www.youtube.com/watch?v=Zc7ouSD0DEQ&index=27&list=PLE6Wd9FR--Ecf_5nCbnSQMHqORpiChfJf

Artificial Neural Networks (Eg: Predictor)

Objective: Compute parameters to minimize a cost function
Operations: Matrix Transforms/Inverse/Multiplications, Dot Products...

Source: https://www.yout.ube.com/watch?v=bxe2T-V8XRs

Bayesian Classifiers

Operations (Training): Mean, Standard Deviations, Logs, binning/compare(/histograms)
Note: Some variations based on assumptions on variance (LDA, QDA)

Source: An Introduction to Statistical Learning with Applications in R (Springer Texts)

K-Nearest Neighbors (Classifier)

Operations: Euclidean Distance Computations
Note: K is tunable. Typical to repeat computations for lot of k values

Decision Tree (Predictors & Classifiers)

Operations: Each split done so that
 Predictor: Minimize Root Mean Square Error
 Classifier: Minimize Gini Index (Note: depth tunable)

Bagging / Random Forests

Operations: Each tree similar to Decision Tree
Note: Typical to see about 200 to 300 trees to stabilize.

Source: An Introduction to Statistical Learning with Applications in R (Springer Texts)

Segway to Spark
● So far, on a single machine with lots of RAM and

compute.
○ How to scale to a cluster

● So far, data from simple csv files
○ How to acquire/clean data on large scale

Discussion
● OpenCL (Deep Learning)

○ Acceleration using GPU, DSPs
○ Outside of Deep Learning: GPU? (scikit-learn faq)
○ But what about Shamrock? OpenCL backend on CPU.
○ Port CUDA kernels into OpenCL kernels in various projects?

● ARM NEON
○ Highly scalable

● OpenMP?
● Tools to profile end-to-end use cases?

○ Perf..

http://scikit-learn.org/stable/faq.html#will-you-add-gpu-support

Backup Slides
● Text Analytics

○ Sparse Matrices and operations
○ Word counts (Naive Bayes)

● Libraries (Python)
○ sklearn (No GPU Support!! FAQ)
○ gensim (Text Analytics)
○ TensorFlowTM(GPU backend available)
○ Caffe (GPU backend available)
○ Theano (GPU backend available)

http://scikit-learn.org/stable/faq.html#will-you-add-gpu-support

Presented by

Date

Event

Data science in Distributed
Environment

Ganesh Raju
Tech Lead, Big Data

Linaro

Thursday 10 March 2016

BKK16

Overview

1. Review of Data Science in Single Node
2. Data Science in Distributed Environment

a. Hadoop and its limitations
3. Data Science using Apache Spark

a. Spark Ecosystem
b. Spark ML
c. Spark Streaming
d. Spark 2.0 and Roadmap

4. Q & A

Hadoop Vs Spark
80+ operators compared to 2 operators in Hadoop

Hadoop and its limitations

Spark - Unified Platform

source: www.databricks.com

Machine Learning Data Pipeline

Why in Spark:
● Machine learning algorithms are

○ Complex, multi-stage
○ Iterative

● MapReduce/Hadoop unsuitable

source: http://www.slideshare.net/databricks/2015-0317-scala-days

Spark is In-Memory and Fast

Apache Spark Stack
Unified Engine across diverse workloads and Environments

R Python Scala Java

Spark Core API

Spark SQL +
DataFrames Streaming MLib / ML

Machine Learning
GraphX

Graph Computation

Spark Core
Internals

SparkContext connects to a cluster manager Obtains executors on cluster nodes Sends app code to
them Sends task to the executors

Driver Program
Cluster Manager

Worker Node

Executor

Worker Node

Cluster

Spark Context

Scheduler
Scheduler

Task

Cache

Task

Executor

Task

Cache

Task

Application Code Distribution

● PySpark enables developers to write driver programs in Python
● Application code is serialized and sent to the worker nodes
● Execution happens in native language (Python/R)

S
pa

rk
 C

on
te

xt

Driver Py4J

Java

Spark
Context

File system

Worker
Node

Worker
Node

Cluster

Python

Python

Python

Python

Python

Python

Pipe

Socket

Apache Spark MLlib / ML Algorithms Supported:

● Classification: Logistic Regression, Linear SVM, Naive Bayes, classification tree
● Regression: Generalized Linear Models (GLMs), Regression Tree
● Collaborative Filtering: Alternating Least Squares (ALS), Non-Negative Matrix Factorization (NMF)
● Clustering: K-Means
● Decomposition: SVD, PCA
● Optimization: Stochastic Gradient Descent (SGD), L-BFGS

Spark Streaming
● Run a streaming computation as a series of very small, deterministic batch jobs

○ Live data streaming is converted into micro batches of input. Batch can be of ½ sec latency.
○ Each batch is processed in Spark
○ Output is returned as micro batches
○ Potential for combining batch and streaming processing.

● Linear models can be trained in streaming fashion
● Model weights can be updated via SGD, thus amenable to streaming
● Consistent API
● Scalable

Apache Spark
General-purpose cluster computing system

● Unified End-to-End data pipeline platform with support for Machine Learning, Streaming, SQL and
Graph Pipelines

● Fast and Expressive Cluster Computing Engine. No Intermediate storage. In-memory Processing. Run
programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk.

● Rich higher level APIs in Scala, Python, R, Java. Typically less code (2-5x)
● REPL
● Interoperability with other ecosystem components

○ Mesos, YARN
○ EC2, EMR
○ HDFS, S3,
○ HBase, Cassandra, Parquet, Hive, JSON, ElasticSearch

Source: https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html

Tungsten Phase 2
speedups of 5-10x

Structured Streaming
real-time engine on
SQL / DataFrames

Unifying Datasets
and DataFrames

Major Features in 2.0 - Project Tungsten

Focus on CPU and Memory Optimization

Code Generation

● Runtime Code Generation by dynamically generating bytecode during evaluation and eliminating Java boxing of primitive data types

● Faster serializer and compression on dataformat like Parquet.

Manual Memory Management and Binary Processing

● Off heap memory management. Avoiding non-transient Java objects (store them in binary format), which reduces GC overhead.

● Minimizing memory usage through denser in-memory data format, with less spill (I/O)

● Better memory accounting (size of bytes) rather than relying on heuristics

● For operators that understand data types (in the case of DataFrames and SQL), work directly against binary format in memory, i.e. have

no serialization/deserialization

Cache-aware Computation

● Exploiting cache locality. Faster sorting and hashing for aggregations, joins, and shuffle

Spark 2.0 - Project Tungsten features

Unified API, One Engine, Automatically Optimized

PythonSQL Java/Scala R ...

DataFrame
Logical Plan

Language
Frontend

LLVMJVM GPU NVRAM SSE/SIMDTungsten
Backend ...OpenCL

Apache Spark Roadmap
.

● Use LLVM for compilation
● Re-implement parallelizable code using OpenCL/SSE/SIMD to utilize underlying CPU / GPU advancements

towards machine learning.

Spark slave nodes can achieve better performance and energy efficiency if with GPU acceleration by doing further data parallelization and
algorithm acceleration.

De facto Analytics Platform

source: www.databricks.com

Q & A

