Attestation

• How does a Realm user confirm that they are using Confidential Compute Architecture?
• They use Attestation - a system where something produces evidence about itself that another party can evaluate to assess trustworthiness.
Arm CCA Components

Realm World

EL0
- Realm App
- Realm Runtime

EL1
- Realm App
- Realm Runtime

EL2
- Realm Management Security Domain (RMM)

World isolation

EL3

Normal World

Hosting Environment

Secure World

TEE

TPM

Root World

Monitor Security Domain

Arm CCA platform security domain

Initial Boot (ROM)
Isolation Hardware
Trusted Subsystems
Invasive Subsystems
Arm CCA Components

What components do I need to trust?

Realm World
- Realm App
- Realm Runtime

Normal World
- Hosting Environment

Secure World
- TEE
- TEE
- SPM

Arm CCA platform security domain
- Initial Boot (ROM)
- Isolation Hardware
- Trusted Subsystems
- Invasive Subsystems
Attestation Report

• A Realm can request an Attestation Report for itself at any time during its execution
• The Report is a bundle of Evidence, cryptographically signed by a known key
• The Evidence can be used to prove:
 • This is a genuine processor with CCA (and not an emulator)
 • The firmware for the system and Realm Management comes from the expected supplier
 • That the system is not in a debug state
 • That the software running in the Realm is that expected to be there
What’s in the Attestation Report?

• The Report is in two logical sections

• The sections are cryptographically bound together

• The Arm CCA Platform Report
 • Hardware Identity
 • Firmware measurements & metadata
 • Security Lifecycle State

• The Realm Report
 • Measurements of Realm Configuration + Initial Content
 • A set of ‘Realm Extensible Measurement’ items
 – measurements generated by Realm runtime SW
 – e.g. during UEFI boot
 • A 'challenge', from the caller, used to show freshness

• The Report is encoded in a standard format
 • Arm contributes to the IETF Entity Attestation Token working group
Attestation Report Flow

- Before a client of the Realm software releases any secrets to the Realm, it needs to establish trust.
- The client and the Realm software collaborate on the context of a request:
 - This will normally include the negotiation of some state that can be used to identify the request.
- The Realm software makes an ABI call to the Realm Management Monitor (RMM):
 - Call includes the state negotiated above as a report ‘challenge’.
Attestation Report Flow (continued)

• The RMM makes a call into Root Monitor world to request a CCA Platform Report
• This request is routed via the Monitor...
• ...to call an ABI exposed by Hardware Enforced Security (HES)
• CCA strongly recommends that Attestation uses Hardware Enforced Security
 • more details on HES in a moment...
Attestation Report Flow (continued)

- Monitor obtains the CCA Platform Report from HES and return it to the RMM
 - HES uses measurements obtained during host boot to populate report
- RMM appends measurements for the Realm to the report and returns it to the Realm
 - Cryptographic binding exists between the Realm and Platform measurements
 - Realm returns the Report to the client
- The evidence values are checked for correctness
Hardware Enforced Security

- Arm CCA strongly recommends the use of Hardware Enforced Security (HES)
- HES is a term covering hardware trusted controllers that can store and process secrets outside of the main AP
 - e.g. secure elements
 - Separation aids the threat model in protecting secrets
- Main AP measured boot evaluates firmware component measurements & metadata
 - sends those values to HES to hold as boot state
- Attestation request routed to HES results in CCA Platform Attestation Report response
- HES signs report using Attestation key derived from a provisioned secret
Evaluating Trustworthiness

• What should the Realm client do with the report?

• Evaluation requires:
 • Checking cryptographic integrity of the report
 • Comparing the values of the evidence in the report against known Reference Values
 – Hardware identities / Firmware measurements from supply chain
 • Checking that the Challenge in the report matches that negotiated with the Realm code

• Sounds tricky?

• Normally the client will send the Report to a trusted Verifier to perform this task

• The Verifier acts on behalf of the SoC Supply Chain to obtain and compare the Reference Values

• Verifiers can be an independent service or pieces of code with provisioned values depending on use case
Building a Verifier Service

• Verifiers sound complicated?!
• Arm is contributing to Project Veraison to help with this problem
• Project Veraison (VERificAtIon of atteStatiON) is an Open Source project to build the software components required for an Attestation Service
 • Flexible, extensible Verification pipeline with Policy driven appraisal of Attestation evidence
 • Provisioning of Resource Values to link supply chain to verification operations
 • Designed to address industry standards (PSA, EAT, DICE) – not just CCA
 • Project has Open Governance – collaboration is very welcome
 • https://github.com/veraison
Firmware provenance

- Attestation systems can identify that firmware components originate from the supply chain
- Signing checks at boot time can ensure only expected components are loaded
- Can we also check whether the components
 - Have known vulnerabilities
 - Have been based on given source revisions
 - Were actually released by the expected process & not due to an insider attack
 - Were built with up to date tools
- Answering these type of questions needs either a dynamic view of a component state or much deeper understanding of its provenance
- Arm is investigating or collaborating in Open Source projects such as Trillian Firmware Transparency / SigStore / In-Toto to understand how provenance can be improved
Thank You
Danke
Gracias
谢谢
ありがとうございます
Asante
Merci
감사합니다
धन्यवाद
شكرًا
ধন্যবাদ
תודה