

The First SVE Enabled Arm Processor: A64FX and Building up Arm HPC Ecosystem

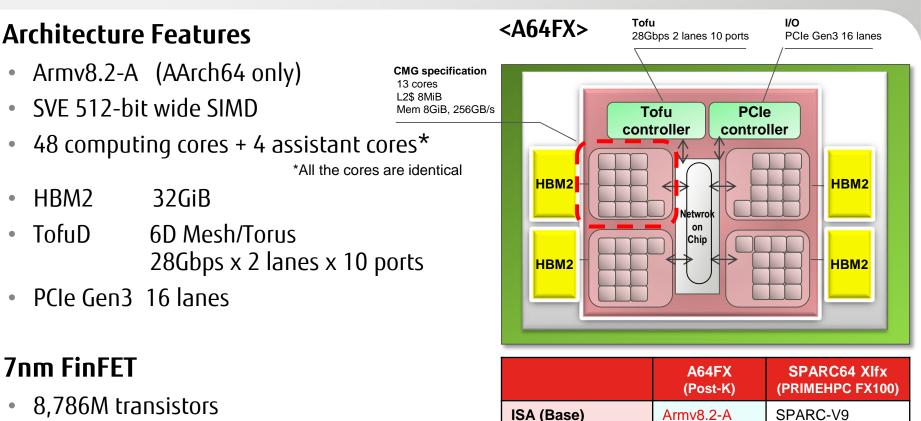
Shinji Sumimoto, Ph.D. Next Generation Technical Computing Unit FUJITSU LIMITED Jan. 14th, 2019

Outline of This Talk

The First SVE Enabled Arm Processor: A64FX A64FX: High Performance Arm CPU

Arm HPC Ecosystem Development

- Arm HPC Software Topics
 - •Activities with Arm, Linaro and OSS Community
 - •OSS Application Porting Updates


A64FX: High Performance Arm CPU

- From presentation slides of Hotchips 30th and Cluster 2018
- Inheriting Fujitsu HPC CPU technologies with commodity standard ISA

A64FX Chip Overview

ISA (Extension)

Process Node

SIMD

of Cores

Memory

Peak Performance

Memory Peak B/W

SVE

7nm

512-bit

48 + 4

HBM2

1024GB/s

>2.7TFLOPS

• 594 package signal pins

Peak Performance (Efficiency)

- >2.7TFLOPS (>90%@DGEMM)
- Memory B/W 1024GB/s (>80%@Stream Triad)

240GB/s x2 (in/out)

HPC-ACE2

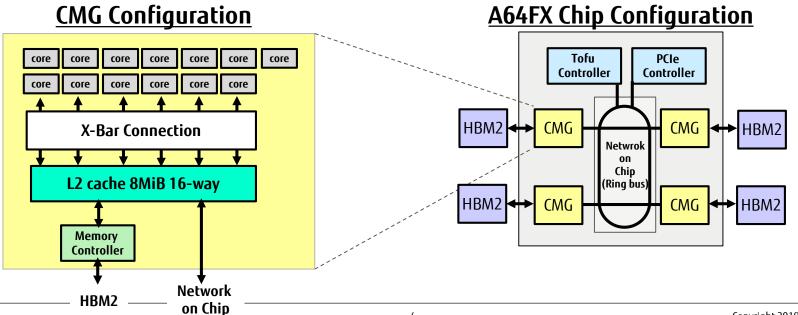
1.1TFLOPS

20nm

256-bit

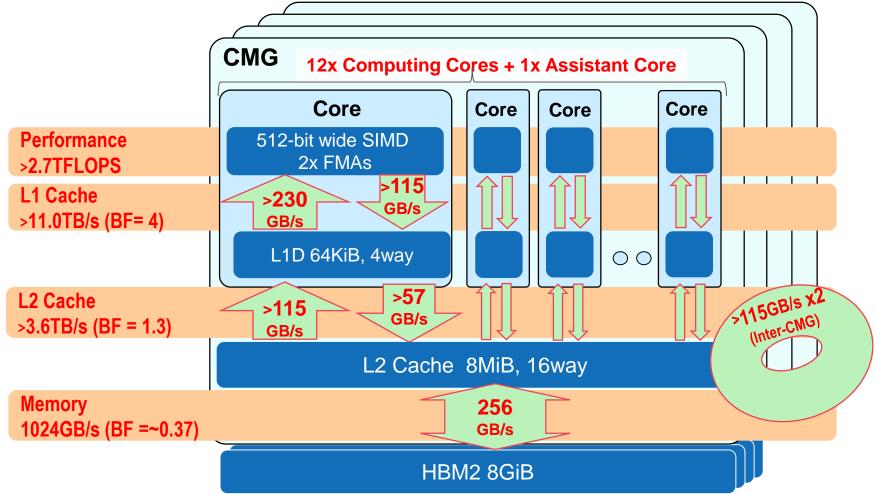
32+2

HMC


A64FX Many-Core Architecture

Consisting of 4 CMGs (Core Memory Group), ToFu and PCIe Controller

- A CMG consists of 13 cores, an L2 cache and a memory controller
 - One out of 13 cores is an assistant core which handles daemon, I/O, etc.
- CMGs keep cache coherency by ccNUMA with on-chip directory
- The X-bar connection realizes high efficiency for the L2 cache throughput
- NUMA-aware software techniques enable linear scalability up to 48 cores


Providing High I/O Performance by Wide Ring On-chip-network

A64FX Memory System

Extremely high bandwidth

- Asynchronous Processing in cores, caches and memory controllers
- Maximizing the capability of each layer's bandwidth

A64FX Core Features

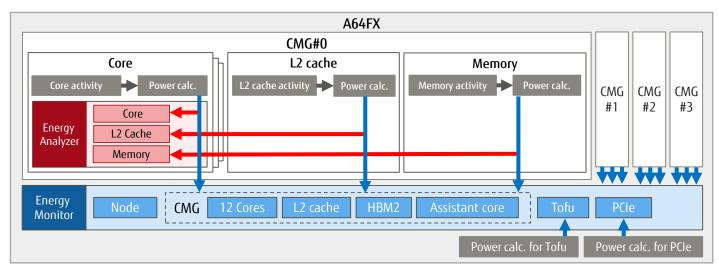
- Optimizing SVE architecture for wide range of applications with Arm including AI area by FP16 INT16/INT8 Dot Product
- Developing A64FX core micro-architecture to increase application performance

	A64FX (Post-K)	SPARC64 XIfx (PRIMEHPC FX100)	SPAR64 VIIIfx (K computer)	
ISA	Armv8.2-A + SVE	SPARC-V9 + HPC-ACE2	SPARC-V9 + HPC-ACE	
SIMD Width	512-bit	256-bit	128-bit	
Four-operand FMA	✓ Enhanced	\checkmark	\checkmark	
Gather/Scatter	✓ Enhanced	\checkmark		
Predicated Operations	✓ Enhanced	\checkmark	\checkmark	
Math. Acceleration	✓ Further enhanced	✓ Enhanced	\checkmark	
Compress	✓ Enhanced	\checkmark		
First Fault Load	✓ New			
FP16	✓ New			
INT16/ INT8 Dot Product	✓ New			
HW Barrier* / Sector Cache*	✓ Further enhanced	✓ Enhanced	\checkmark	

* Utilizing AArch64 implementation-defined system registers

A64FX: Power monitor and analyzer

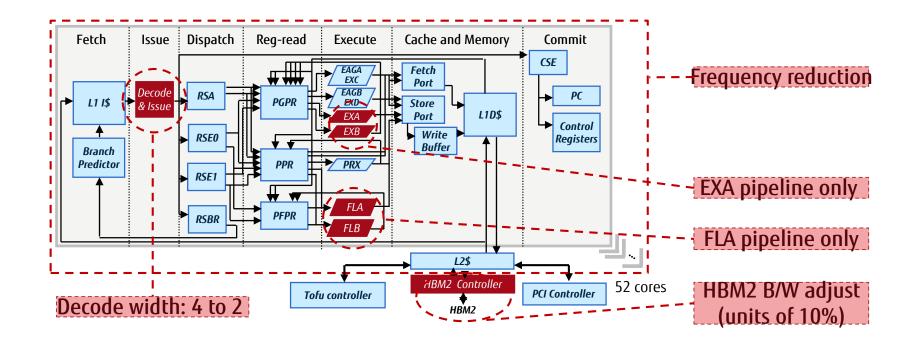
Energy monitor (per chip)


■Node power via Power API*1 (~msec)

Averaged power of a node, CMG (cores, an L2 cache, a memory) etc. Energy analyzer (per core)

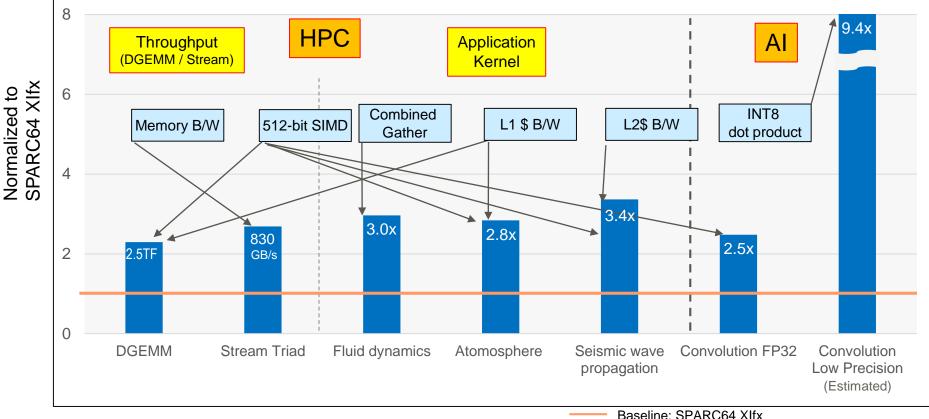
- Power profiler via PAPI*2 (~nsec)
- Fine grained power analysis of a core, an L2 cache and a memory

*1: Sandia National Laboratory


*2: Performance Application Programming Interface

A64FX: Power Knobs to reduce power consumption Fujitsu

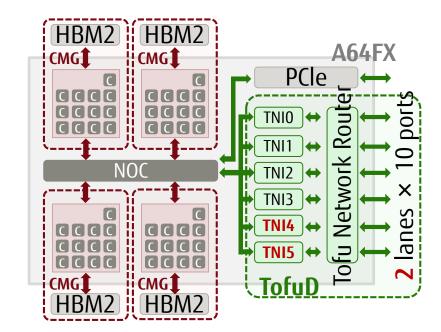
"Power knob" limits units' activity via user APIs


Performance/W would be optimized by utilizing Power knobs, Energy monitor & analyzer

A64FX Chip Level Application Performance

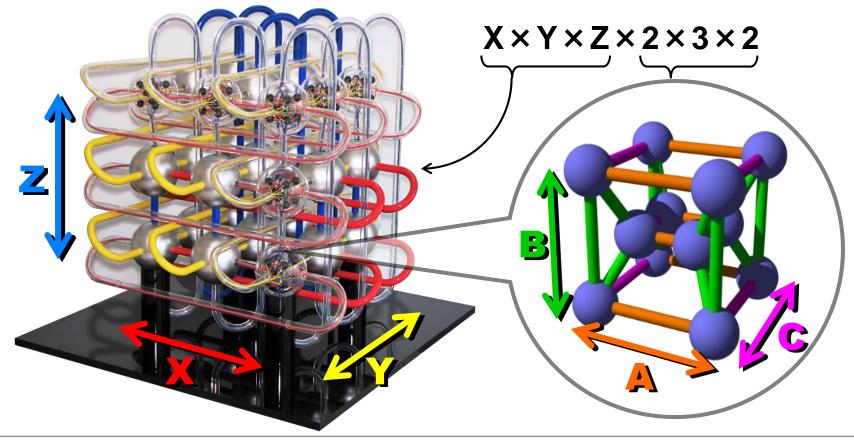
- Boosting application performance up by micro-architectural enhancements, 512-bit wide SIMD, HBM2 and semi-conductor process technologies
 - > 2.5x faster in HPC/AI benchmarks than that of SPARC64 XIfx tuned by Fujitsu compiler for A64FX micro-architecture and SVE

A64FX Kernel Benchmark Performance (Preliminary results)


A64FX: Tofu interconnect D

Integrated w/ rich resources

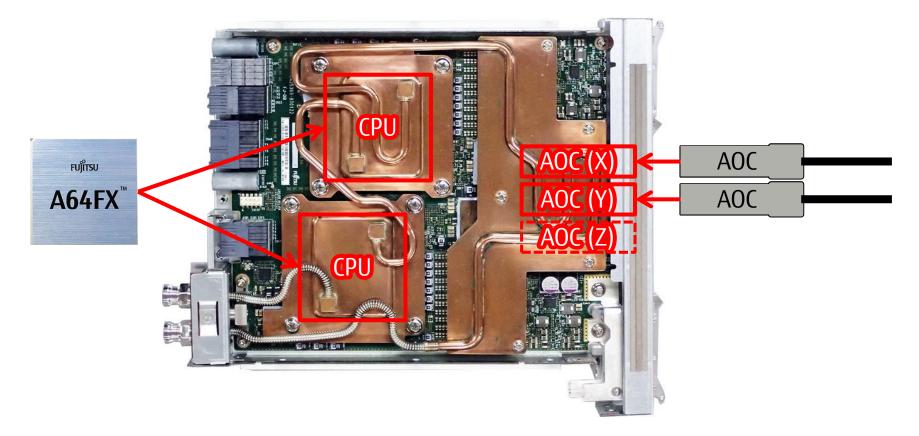
Increased TNIs achieves higher injection BW & flexible comm. patterns


- Increased barrier resources allow flexible collective comm. algorithms
- Memory bypassing achieves low latency
 - Direct descriptor & cache injection

	TofuD spec	
Data rate	28.05 Gbps	
Link bandwidth	dth 6.8 GB/s	
Injection bandwidth	40.8 GB/s	
	Measured	
Put throughput 6.35 GB/s		
PingPong latency	atency 0.49~0.54 µs	

TofuD: 6D Mesh/Torus Network

Six coordinates: (X, Y, Z) × (A, B, C)
 X, Y and Z: sizes are depends on the system size
 A, B and C: sizes are fixed to 2, 3, and 2 respectively
 Tofu stands for "torus fusion"



TofuD: Packaging – CPU Memory Unit

Two CPUs connected with C-axis

- $\blacksquare X \times Y \times Z \times A \times B \times C = 1 \times 1 \times 1 \times 1 \times 1 \times 2$
- Two or three active optical cable cages on board

Each cable is shared by two CPUs

TofuD: Packaging – Rack Structure

Rack

- 8 shelves
- 192 CMUs or 384 CPUs

Shelf

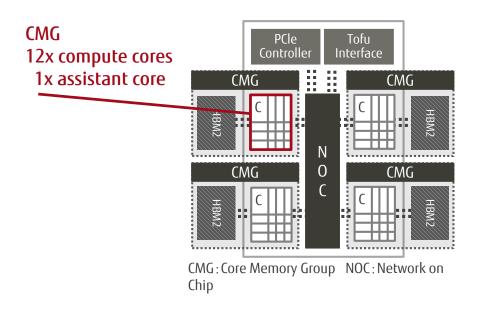
- 24 CMUs or 48 CPUs
- $\blacksquare X \times Y \times Z \times A \times B \times C = 1 \times 1 \times 4 \times 2 \times 3 \times 2$

Top or bottom half of rack

- 4 shelves
- $\blacksquare X \times Y \times Z \times A \times B \times C = 2 \times 2 \times 4 \times 2 \times 3 \times 2$

TofuD: Put Latencies & Throughput& Injection Rate from Clustrer 2018

TofuD: Evaluated by hardware emulators using the production RTL codes
 Simulation model: System-level included multiple nodes


	Communication settings	Latency
Tofu	Descriptor on main memory	1.15 µs
	Direct Descriptor	0.91 µs
Tofu2	Cache injection OFF	0.87 µs
	Cache injection ON	0.71 µs
TofuD	To/From far CMGs	0.54 µs
	To/From near CMGs	0.49 µs

	Put throughput	Injection rate
Tofu	4.76 GB/s (95%)	15.0 GB/s (77%)
Tofu2	11.46 GB/s (92%)	45.8 GB/s (92%)
TofuD	6.35 GB/s (93%)	38.1 GB/s (93%)

A64FX: Summary

FUJITSU

Arm SVE, high performance and efficiency
 DP performance >2.7 TFLOPS, >90%@DGEMM
 Memory BW 1024 GB/s, >80%@STREAM Triad

	A64FX	
ISA (Base, extension)	Armv8.2-A, SVE	
Process technology	7 nm	
Peak DP performance	>2.7 TFLOPS	
SIMD width	512-bit	
# of compute cores	48	
Memory capacity	32 GiB (HBM2 x4)	
Memory peak bandwidth	1024 GB/s	
PCIe	Gen3 16 lanes	
High speed interconnect	TofuD integrated	

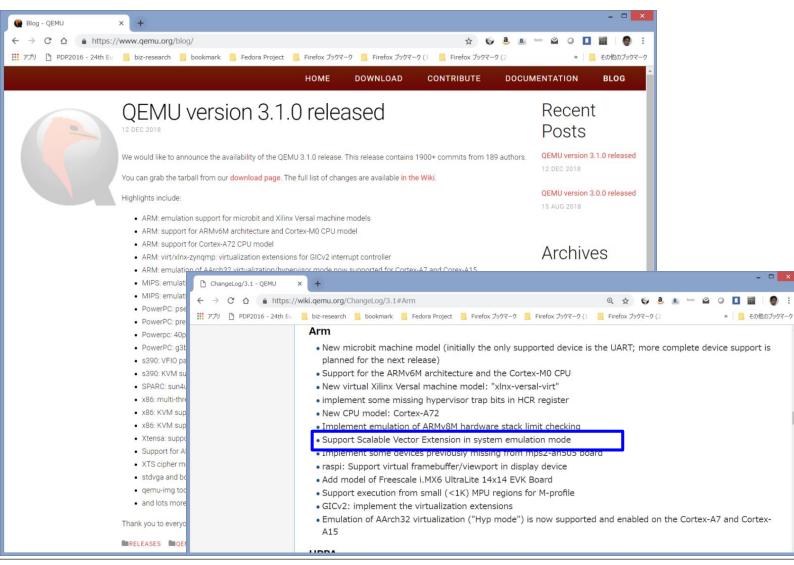
Arm HPC Software Topics: Activities with Linaro and OSS Community

With Arm and Linaro

With OSS Community: Open MPI and Lustre

Activities with Arm and Linaro

- LLVM SVE upstreaming and OSS porting with Arm
 - Variable Vector Length Support for LLVM Community in cooperation with Arm
- OpenHPC with Linaro:
 - Mr. Okamoto(Fujitsu) has been selected a 2018-2019 TSC(Technical Steering Committee) member


Development Status with Linaro

- LLVM/Clang for aarch64 Improvement: now ongoing
 - Register allocation, Software pipelining support, Vectorization/SIMDization
 - Pushing SVE support to the LLVM community in cooperation with Arm, Variable Vector Length Support is critical issue to introduce to LLVM tree.
- QEMU/SVE Development: for building SVE software development
 - •V3.1.0 released: https://www.qemu.org/2018/12/12/qemu-3-1-0/

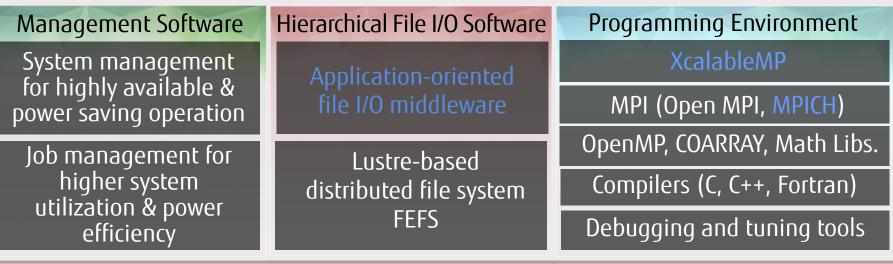
QEMU/SVE Development with Linaro https://www.gemu.org/2018/12/12/gemu-3-1-0/

FUJITSU

Finally, Version 3.1.0 supports SVE in system emulation mode!

Post-K Software Stack

Under Development



Post-K system supports SBSA/SBBR

Keeping binary compatibility with the other Aarch64 based systems.

Post-K Applications

FUJITSU Technical Computing Suite / RIKEN Advanced System Software

Linux OS / McKernel (Lightweight Kernel)

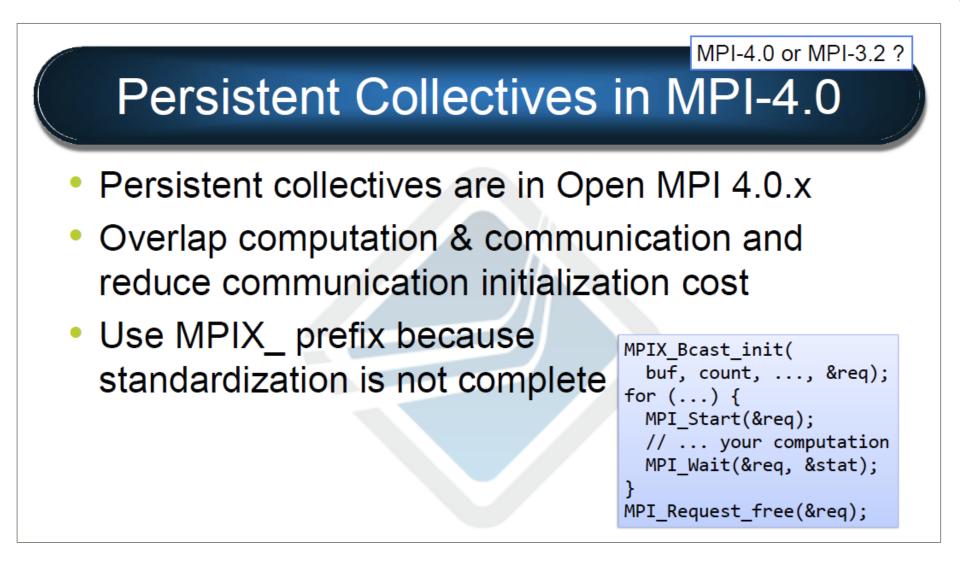
Post-K System Hardware

Open MPI: from SC18 BoF Slides

https://www.open-mpi.org/papers/sc-2018

Open MPI: from SC18 BoF Slides

https://www.open-mpi.org/papers/sc-2018


MPI for the Post-K Computer

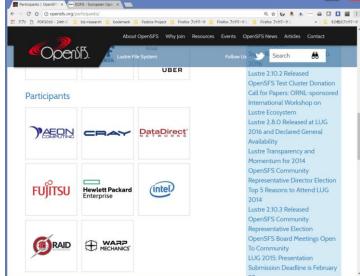
- Post-K MPI based on Open MPI
 - Support A64FX (Armv8.2-A+SVE) and TofuD
 - Plan to use Open MPI 4.0 and PMIx 2.1
- Contribution to Open MPI from post-K MPI
 - Persistent collectives [see next page]
 - Datatype for half-precision floating point [early 2019]
 - Thread parallelization of pack/unpack [early 2019]

Half-precision (FP16) datatype development started in cooperation with ANL and Mellanox

Open MPI: from SC18 BoF Slides

https://www.open-mpi.org/papers/sc-2018

Lustre Community: OpenSFS and EOFS


- OpenSFS: US Based Non-profit Organization
 President: Sarp Oral (ORNL)
- EOFS: EU Based Non-profit Organization

President: Frank Baetke (HPE)

Lustre for Arm

- Fujitsu is member of OpenSFS and will support Lustre based products.
- Two Major Events
 - Lustre User Group(LUG)
 - LUG 19@Houston, 2019/5/15-17 http://opensfs.org/events/
 - Lustre Admins and Devs workshop(LAD)
 - LAD 18@Paris, 2018/9/24-25 <u>https://www.eofs.eu/events/lad18</u>

Slides Archives are on each site



2018/11: Whamcloud has started Lustre client support on Arm based platforms

https://www.ddn.com/press-releases/ddn-unveils-professional-support-lustre-arm-based-rm-platforms/

Arm HPC Software Topics: OSS Application Porting Updates

OSS apps porting at Arm HPC Users Group

(http://arm-hpc.gitlab.io/)

Twelve primary OSS applications are listed and being tested in the Users Group for each compilers, collaboratively w/ Arm

Application	Lang.	GCC	LLVM	Arm	Fujitsu
LAMMPS	C++	Modified	Modified	Modified	Modified
GROMACS	С	Modified	Modified	Modified	Modified
GAMESS*	Fortran	Modified	Modified	Modified	Modified
OpenFOAM	C++	Modified	Modified	Modified	Modified
NAMD	C++	Modified	Modified	Modified	Modified
WRF	Fortran	Modified	Modified	Modified	Modified
Quantum ESPRESSO	Fortran	Ok in as is	Ok in as is	Ok in as is	Modified
NWChem	Fortran	Ok in as is	Modified	Modified	ongoing
ABINIT	Fortran	Modified	Modified	Modified	Modified
CP2K	Fortran	Ok in as is	Issues found	Issues found	ongoing
NEST*	C++	Ok in as is	Modified	Modified	Modified
BLAST*	C++	Ok in as is	Modified	Modified	Modified

* Registered by Fujitsu

Issue of CP2K (known issue)

flang rejects valid empty constructor https://github.com/flang-compiler/flang/issues/239 (Closed) https://github.com/flang-compiler/flang/issues/615 (New Ticket, Segfault)

dbcsr_data_types.F90

module dbcsr_data_types TYPE dbcsr_mempool_type END TYPE dbcsr_mempool_type

TYPE dbcsr_memtype_type LOGICAL :: mpi = .FALSE. TYPE(dbcsr_mempool_type), POINTER :: pool => Null() END TYPE dbcsr_memtype_type end module

dbcsr_data_types_user.F90

module a

use dbcsr_data_types, only: dbcsr_memtype_type

type foo
 type(dbcsr_memtype_type) :: val = dbcsr_memtype_type()
 end type
end module

[eco@cn-r05-01 work]\$ gfortran -c dbcsr_data_types.F90 && gfortran -c dbcsr_data_types_user.F90 [eco@cn-r05-01 work]\$ [eco@cn-r05-01 work]\$ flang -c dbcsr_data_types.F90 && flang -c dbcsr_data_types_user.F90 F90-F-0155-Empty structure constructor() - type dbcsr_memtype_type (dbcsr_data_types_user.F90: 5) F90/x86-64 Linux Flang - 1.5 2017-05-01: compilation aborted [eco@cn-r05-01 work]\$

Summary

A64FX: High Performance Arm CPU > 2.5 TFLOPS singe-chip degemm performance Arm is already not only mobile CPU but also high-end HPCs

Arm HPC Ecosystem Development

- Arm HPC Software Topics
 - •Activities with Arm, Linaro and OSS Community
 - Porting and Evaluation of HPC Application
- Will need continuous efforts

FUJTSU

shaping tomorrow with you