Security and Boot Architecture

- PI/MM on ARM discussions tomorrow (Tues)
 - UEFI members only
- Brief Trusted Firmware update
 - Where is the upstream for 96Boards TF platform code?
 - Potential requirements
- GICv3 impact on secure world architecture
- Improving AArch32 secure world support
 - More library support for Secure OS integration (PSCI + IP drivers)
- Common support for boot path verification
- Secure firmware interfaces
 - Standard secure world -> normal world cold boot interface
 - Or, more standard SMCs
 - For example, to pass Secure DRAM region info
Security and Boot Architecture (2)

• Segment specific use-cases
 – Trusted OS / Secure-EL1 payload on Enterprise systems?
 – Boot architecture on Cortex-A class IoT systems

• Missing secure services/drivers/features
 – Especially for OPTEE

• Security hardening
 – Threat models, code audits, Pen testing, etc...

• Non-functional requirements
 – Performance, RAM budget on IoT or many core systems
 – Trace format for use-cases touching multiple components

• Anything else?
ARM Trusted Firmware Update

Dan Handley
Linaro Connect San-Francisco 2015
ARM Trusted Firmware for 64-bit ARMv8-A

- Reference boot flows
 - For 64-bit ARMv8-A systems
- Open Source at GitHub
 - BSD License
 - Contributors welcome
- BL31 runtime is compatible with other boot firmware
- Trusted OS is optional
- Applicable to all segments

https://github.com/ARM-software/arm-trusted-firmware
Feature evolution

- **PSCI v1.0**
 - Platform porting interface overhaul for flexible topology and enhanced CPU_SUSPEND support
 - Now upstream including compatibility support for existing platform ports

- **Trusted Board Boot**
 - Futureproof interface supporting alternative Crypto Libs, Certificate structures and Chains of Trust
 - Mandatory features nearly complete: Firmware Update (Recovery Mode) coming soon

- **System IP**
 - CCN-xxx driver complete (pull request pending)
 - Full GICv3 support coming soon (see later)

- **Firmware interoperability (entrypoint rework, programmable reset address)**

- **Platform ports**
 - NVidia has upstreamed ports for Tegra T210 and T132
 - Mediatek has upstreamed a port for MT8173
GIC versions

GICv2

- Features
 - Up to 8 cores
 - Up to 1020 interrupt IDs
 - Up to 8 bits of priority
 - Software Generated Interrupts
 - TrustZone support
 - Virtualization support

- Implemented by:
 - CoreLink™ GIC-400

GICv3

- Adds:
 - Support for many more than 8 cores
 - Message Based Interrupts
 - Enhanced security model
 - System register interface
 - Vastly expanded interrupt ID space
 - Optional support for legacy GICv2 compatible operation

- Implemented by:
 - CoreLink™ GIC-500
GICv3 Security Groups

<table>
<thead>
<tr>
<th>Group 0</th>
<th>Secure Group 1</th>
<th>Non-Secure Group 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always secure</td>
<td>FIQ if in Non-Secure state</td>
<td>FIQ if in Secure state</td>
</tr>
<tr>
<td>Always FIQ</td>
<td>IRQ if in Secure state</td>
<td>IRQ if in Non-Secure state</td>
</tr>
<tr>
<td>Typically used by EL3 firmware</td>
<td>Typically used by Trusted OS</td>
<td>Typically used by Rich OS or Hypervisor</td>
</tr>
</tbody>
</table>
GIC Interrupt Groups, Lines and Usage models

- “Canonical” model (trap other world interrupt to EL3) is rare in practice
 - Most Trusted OS always trap Group0 (S) interrupts to S-EL1
 - Some (for example OPTEE) also trap Group1 (NS) interrupts to S-EL1
 - For example, save task state, before forwarding to normal world via SMC
 - Other Trusted OS do not enable Group1 interrupts at S-EL1 (symmetric model)
 - TSPD supports both models

- GICv3 S-Group1 interrupts will be useful to enable dedicated EL3 interrupts
 - Avoids having to shoe-horn use-cases into GICv2 systems
- But expect S-EL1 initial handling of Group0/NS-Group1 will continue with GICv3
 - Substantial design/implementation churn in Trusted OS required to switch to trap-to-EL3 model
GICv3 Software Migration Strategy
Hardware and Software System compatibility

<table>
<thead>
<tr>
<th>Software Architectures</th>
<th>GICv2 (e.g. GIC-400)</th>
<th>GICv3+v2 (e.g. GIC-500)</th>
<th>GICv3 (no legacy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetric GICv2</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>all ARE=0, SRE=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymmetric GICv3 + GICv2</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>ARE_NS=1, ARE_S=0, all SRE=1 except SRE_EL1(S)=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symmetric GICv3</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>all ARE=1, SRE=1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GICv3 Software Migration Strategy

Current support in ARM Trusted Firmware

Current GIC driver

<table>
<thead>
<tr>
<th>Software Architectures</th>
<th>GICv2 (e.g. GIC-400)</th>
<th>GICv3+v2 (e.g. GIC-500)</th>
<th>GICv3 (no legacy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetric GICv2</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>all ARE=0, SRE=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymmetric GICv3 + GICv2</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>ARE_NS=1, ARE_S=0, all SRE=1 except SRE_EL1(S)=0</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Symmetric GICv3</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>all ARE=1, SRE=1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardware Systems

- Symmetric GICv2: all ARE=0, SRE=0
- Asymmetric GICv3 + GICv2: ARE_NS=1, ARE_S=0, all SRE=1 except SRE_EL1(S)=0
- Symmetric GICv3: all ARE=1, SRE=1

Not supported: ✓

<table>
<thead>
<tr>
<th>Hardware Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>GICv2 (e.g. GIC-400)</td>
</tr>
<tr>
<td>✓</td>
</tr>
<tr>
<td>✗</td>
</tr>
<tr>
<td>✗</td>
</tr>
</tbody>
</table>
GICv3 Software Migration Strategy

Proposed GIC driver support

<table>
<thead>
<tr>
<th>Software Architectures</th>
<th>GICv2 (e.g. GIC-400)</th>
<th>GICv3+v2 (e.g. GIC-500)</th>
<th>GICv3 (no legacy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetric GICv2</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>all ARE=0, SRE=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymmetric GICv3 + GICv2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ARE_NS=1, ARE_S=0,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all SRE=1 except SRE_EL1(S)=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symmetric GICv3</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>all ARE=1, SRE=1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardware Systems

- **New GICv2 driver**
- **New GICv3 driver**
- **Deprecate**